

Development of diagnostic tools to reduce antimicrobial (mis)use

Novel identified biomarkers and available biobanked samples

Elise Schieck and Sonal Henson Animal and Human Health, ILRI

Scientific seminars ILRI Nairobi, 8 November 2021

The idea...

The idea...

ILRI INTERNATIONAL INSTOCK RESEARCH IN STITUTE Today, sick animals are often treated with antimicrobials, regardless of the cause of disease. A diagnostic that differentiates between viral and bacterial infections could potentially reduce this overuse.

The idea...

To test the possibility of developing an easy-to-use and cheap diagnostic test that can differentiate between bacterial and viral infections.

Bacterial and viral infections typically induce slightly different responses in the hosts

We are testing the possibility of using these host markers to develop a quick and easy-to-use field test.

This may reduce the use of antibiotics to animals infected with viruses.

Responses induced by pathogen associated molecular patterns

ILRI INTERNATIONAL UVESTOCK RESEARCH IN STITUTE CGIAR SLU

Discovery group: 240 children 52 definite bacterial infection, 92 definite viral infection, 96 indeterminate infection.

Validation group: 130 children 23 definite bacterial, 28 definite viral, 79 indeterminate infections

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature JAMA | Preliminary Communication | INNOVATIONS IN HEALTH CARE DELIVERY for Discriminating Bacterial vs Viral Infection in Febrile Children Jethro A. Herberg, PhD; Myrsini Kaforou, PhD; Victoria J. Wright, PhD; Hannah Shailes, BSC; Hariklia Eleftherohorinou, PhD; Clive J. Hoggart, PhD; Miriam Cebev-Lónez. MSc: Michael J. Carter. MRCPCH: Victoria A. Janes. MD: Stuart Gormlev. MRes: Chisato Shimizu. MD: Adriana H. Tremoulet. Jethro A. Herberg, PhD; Myrsini Kaforou, PhD; Victoria J. Wright, PhD; Hannah Shailes, BSc; Hariklia Eleftherohorinou, PhD; Clive J. Hoggart, PhD; Miriam Cebey-López, MSc; Michael J. Carter, MRCPCH; Victoria A. Janes, MD; Stuart Gormley, MRes; Chisato Shimizu, MD; Adriana H. Tremoulet, MD; Anouk M. Barendreet. BSc: Antonio Salas. PhD: John Kanegave. MD: Andrew J. Pollard. PhD: Saul N. Faust. PhD: Saniav Patel. FRCPCH: Miriam Cebey-López, MSc; Michael J. Carter, MRCPCH; Victoria A. Janes, MD; Stuart Gormley, MRes; Chisato Shimizu, MD; Adriana H. Tré Anouk M. Barendregt, BSc; Antonio Salas, PhD; John Kanegaye, MD; Andrew J. Pollard, PhD; Saul N. Faust, PhD; Sanjay Patel, Frederic Taco Kujiners, PhD; Federico Martinón-Torres, PhD; Jane C. Rume, MD; Lachlan, LM. Coin, PhD; Michael Levin, ERCPCH, for the Interna-Anouk M. Barendregt, BSc; Antonio Salas, PhD; John Kanegaye, MD; Andrew J. Pollard, PhD; Saul N. Faust, PhD; Sanjay Patel, FRCPCH; Taco Kuijpers, PhD; Federico Martinón-Torres, PhD; Jane C. Burns, MD; Lachlan J. M. Coin, PhD; Michael Levin, FRCPCH; for the IRIS Consortium

- Identified 38 transcripts differentially expressed
- Narrowed down to 2-transcript ٠ ration to discriminate bacterial vs. viral infections

Setting up...

- Homologues of top candidates identified in pigs
- Candidate reference genes identified
- Primers for qPCR designed
- qPCR set up (normalized to reference genes)

Category	Gene	
Putative viral markers	IFNα	
	IFNβ	
	IFITM3	
	STING	
	IFI44L	
	IFIT3	
	MxA	
	RSAD2	
Putative Bacterial	FAM89A	
markers	S100PBP	
	SLPI	
	UPB1	
Pro-inflam-matory	IL-1β	
cytokines	IL-6	
	IL-8	
	$TNF-\alpha$	

Test material

- Pig PBMCs stimulated with agonists
- Pig PBMCs stimulated with split influenza virus or inactivated Actinobacillus pleuropneumoniae

Category	Gene
Putative viral markers	IFNα
	IFNβ
	IFITM3
	STING
	IFI44L
	IFIT3
	MxA
	RSAD2
Putative Bacterial	FAM89A
markers	S100PBP
	SLPI
	UPB1
Pro-inflam-matory	<i>IL-1β</i>
cytokines	IL-6
	IL-8
	TNF-α

Category	Gene		Viral mimics		Bacterial mimics			Inactivated microbes	
		ODN 2216 (TLR9)	R848 (TLR7/ 8)	poly (I:C) (TLR3)	Pam3CSK4 (TLR2/ 1)	LPS (TLR4)	FLiC (TLR5)	Split Influenza	A. pleuro (HI)
	IFNα	3.4	0	1.0	0.2	0.3	0.3	1.7	0.4
	IFNβ	409.2	1.8	1992.0	3.0	0.5	1.7	70.9	1.4
	IFITM3	19.9	11.9	5.7	2.7	0.9	1.3	22.5	0.7
	STING	0.6	0.2	0.6	0.5	0.5	0.7	1.3	0.4
	IFI44L	7.5	3.4	3.3	1.4	0.7	1.1	8.0	0.5
	IFIT3	41.7	12.4	7.0	1.5	46.2	0.7	95.9	0.2
-	MxA	72.6	39.5	17.7	7.9	0.5	1.0	63.0	0.7
	RSAD2	206.7	73.3	30.7	7.6	0.8	1.5	113.5	0,5
Putative Bacterial	FAM89A	0.6	0.1	0.5	0.5	0.8	0.8	0.6	0.6
markers	S100PBP	0.6	0.2	0.7	0.6	0.5	0.6	0.7	0.4
	SLPI	72.6	5.3	28.1	5.0	0.2	2.0	233.8	0.3
	UPB1	25.5	78.5	5.9	66.5	38.8	20.1	2.2	30.8
Pro-inflam-matory cytokines	IL-1β	1.0	1.8	10.3	67.2	40.7	30.0	0.7	17.7
	IL-6	20.7	96.7	19.7	72.3	51.7	24.5	3.7	12.2
	IL-8	1.9	9.0	44.0	119.8	66.6	32.0	0.3	24.3
	TNF-α	2.6	0.9	2.3	1.9	2.4	2.5	2.1	1.6
≤ 0.0625 > 0.0	625 - 0.125	> 0.125 - 0).25 > 0.25	5 - 0.5 > 0.	5 - < 2 2 to < 4	4 4 to	0 < 8	8 to < 16	≥16

Hjertner et al., PLOS ONE 2021

Testing on blood from Actinobacillus pleuropneumoniae infected pigs

CGIAR

INSTITUTE

Phase 2

Goal: To expand the list of candidate genes to test On more samples

Method: Identify genes from published transcriptome studies in pigs.

Transcriptome studies included in analysis

Viral-infection	Bacterial-infection	Virus-Bacterial co-infection
Cruz-Pulido et al. (2021) - Comparative Transcriptome Profiling of Human and Pig Intestinal Epithelial Cells after Porcine Deltacoronavirus (PDCov) Infection. - RNASeq	Kamminga et al. (2020) - Combined Transcriptome Sequencing of <u>Mycoplasma hyopneumoniae</u> and Infected Pig Lung Tissue Reveals Up-Regulation of Bacterial F1-Like ATPase and Down-Regulation of the P102 Cilium Adhesin in vivo - RNASeq	 Dang et al. (2014) Transcriptional approach to study porcine tracheal epithelial cells individually or dually infected with <u>swine influenza virus</u> and <u>S. suis</u> Microarray
 Miller et al. (2020) Comparison of the transcriptome response within the swine tracheobronchial lymph node following infection with <u>PRRSV, PCV-2</u> <u>or IAV-S</u>. Digital Gene Expression Tag Profiling (DGETP) 	Ni et al. (2019) - RNA-seq transcriptome profiling of porcine lung from two pig breeds in response to <u>Mycoplasma hyopneumoniae</u> infection. - RNASeq	Lin et al. (2015) Investigation of Pathogenesis of <u>H1N1</u> <u>Influenza Virus</u> and <u>Swine Streptococcus</u> <u>suis</u> Serotype 2 Co-Infection in Pigs by <u>Microarray</u> Analysis
Liang et al. (2017) – PRRSV-infected PAMs Dong et al. (2021) – PRRSV-infected tonsils Hu et al. (2020) - PEDV-infected IPEC	Yan et al. (2019) - Histological and comparative transcriptome analyses provide insights into small intestine health in diarrheal piglets after infection with <u>Clostridium perfringens</u> type C. - RNASeq	Auray et al. (2016) - Transcriptional Analysis of <u>PRRSV</u> - Infected Porcine Dendritic Cell Response to <u>Streptococcus suis</u> Infection Reveals Up-Regulation of Inflammatory-Related Genes Expression - Microarray

GIAR

Pathways upregulated in the studies

- 1. Clean and merge data from all selected studies
 - There are many gaps in the data, e.g there are no genes where we have data from all pathogen infections.
 - Different methods used for measuring gene expression
- 2. Identify genes with similar expression profiles by clustering
 - UR in viral-infected but DR in bacterial-infected
 - UR in bacterial-infected but DR in viral-infected

Final datasets chosen for comparison

1. Microarray datasets

- 1. Dang et al., 2014
 - Infection with <u>H1N1</u>, <u>Streptococcus suis</u>, and co-infection with both in porcine tracheal epithelial cells
- 2. Lin et al., 2015
 - Pigs infected with <u>H1N1</u>, <u>S. suis</u> and co-infection with both.
 - Expression in lung tissue.
- 3. Auray et al., 2016
 - Infection of dendritic cells and monocytes with <u>S. suis</u> and <u>PRRSV</u>.

Genes UR by bacterial infection in at least 2 studies

Function	SYMBOL	Gene description
Biological and metabolic processes	HK2	Hexokinase 2
	PLAT	plasminogen activator, tissue
	SLC2A1	Solute carrier family 2 (facilitated glucose transporter), member 1
Cytokines, chemokines, and related receptors	CSF2	colony stimulating factor 2
	SPP1	Secreted phosphoprotein 1
Lipid metabolism	LDLR	Low density lipoprotein receptor
Transcriptional and translational regulation	AGO2	argonaute RISC catalytic component 2

Genes UR by viral infection in at least 2 studies

Function	SYMBOL	Gene description		
Biological & metabolic processes	USP18	ubiquitin specific peptidase 18		
	ZBP1	Z-DNA binding protein 1		
	BCR	BCR activator of RhoGEF and GTPase		
Cytokine signalling	EIF2AK2	eukaryotic translation initiation factor 2 alpha kinase 2		
	TRIM21	tripartite motif containing 21		
Cytokines, chemokines, & related receptors	CCL4	C-C motif chemokine ligand 4		
	TNFSF10	TNF superfamily member 10		
	IFNB1	interferon beta 1		
Cytoskeleton/actin rearrangement	TMOD4	tropomodulin 4		
	RSAD2	radical S-adenosyl methionine domain containing 2		
	IFIT3	interferon-induced protein with tetratricopeptide repeats 3		
	IFIT1	interferon-induced protein with tetratricopeptide repeats 1		
	MX1	MX dynamin like GTPase 1		
Defence response	MX2	myxovirus (influenza virus) resistance 2 (mouse)		
	DDX58	DExD/H-box helicase 58		
	OAS2	2'-5'-oligoadenylate synthetase 2		
	GBP1	guanylate binding protein 1, interferon-inducible		
	IFIH1	interferon induced with helicase C domain 1		
	PARP12	poly(ADP-ribose) polymerase family member 12		
Transcriptional & translational regulation	PARP14	poly(ADP-ribose) polymerase family member 14		

Short term:

- Test more biomarkers
- Collect more samples

Long term:

- Expand to other livestock
- Transfer to penside format

Samples collected for future use

disease	species	healthy	disease	sample type (full blood)
СВРР	cattle	15	15	paxgene
ССРР	goats	40	28	paxgene
СВРР	cattle	31	9	RNAlater
AFS	pigs	17	5	RNAlater
BRSV	cattle	54		RNAlater

Israel's MeMed gets FDA approval for 'breakthrough' infection test

Purpose of test is to tell physicians whether body is waging war on bacteria or virus, and make decisions about whether to treat with antibiotics

By RICKY BEN-DAVID ~ 20 September 2021, 5:14 pm |

MeMed Diagnostics founders Dr. Kfir Oved and Dr. Eran Eden. (Courtesy)

Acknowledgements

ILRI Team

SLU Team

SVA

Elise Schieck Sonal Henson Benjamin Nzau Caroline Fossum Bernt Hjertner Claudia Lützenschwab Ulf Magnusson

Marie Sjölund

The International Livestock Research Institute (ILRI) is a non-profit institution helping people in low- and middle-income countries to improve their lives, livelihoods and lands through the animals that remain the backbone of small-scale agriculture and enterprise across the developing world. ILRI belongs to CGIAR, a global research-for-development partnership working for a food-secure future. ILRI's funders, through the <u>CGIAR Trust Fund</u>, and its many partners make ILRI's work possible and its mission a reality. Australian animal scientist and Nobel Laureate Peter Doherty serves as ILRI's patron. You are free to use and share this material under the Creative Commons Attribution 4.0 International Licence @①.

better lives through livestock

ilri.org