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Abstract: The savannas of eastern Colombia located in the Orinoco river 

basin represent 18% of the Latin American neotropical savannas, and those 

areas that are tillable and closer to markets are subject to considerable 

anthropic pressure in the quest for intensification. Historically, and 

even today, beef cattle production constitutes the main land use, and 

much of it is subjected to extensive management. This paper describes for 

the first time, the use of cattle grazing experiments to assess methane 

(CH4) emissions from neotropical savanna-based beef breeding systems, and 

with the support of published research conducted next to them, and 

estimate of the carbon (C) footprint in carbon dioxide equivalents (CO2-

eq) for the whole system. Over 5 years and covering complete reproductive 

cycles, conventional weaning (CW) herd system was compared to an early 

weaning (EW) herd system, that represented a modest degree of more 

intensive savanna management. Differences were found between the two 

management practices in total CH4 emissions, emission intensities [kg CH4 

kg -1 calf born and kg CH4 kg -1 liveweight gain (LWG)] and emission 

efficiencies (kg CO2-eq kg -1 calf born and kg CH4 kg -1 LWG), that 

mostly associated with the different lactation lengths. When both herd 

systems were carried over until calves, later yearlings, reached to 25 

months of age, the differences in favor of EW breeding herd system were 

diminished. The calculated C footprint in (CO2-eq) of both management 

practices was near neutral subjected to a number of assumptions and the 

use of limited published information on savanna C stocks and CH4 and 

nitrous oxide (N2O) emissions from soil, and it is posited that both herd 

systems were nearly in equilibrium. The available data and results show 

the need for further information on the neotropical savanna C stocks and 

C sequestration potential of soils of the Orinoco river basin. More 

reliable datasets regarding below-ground C inputs and CH4 and N2O 

emissions from soil are needed to provide a useful basal benchmark for, 

and approach to, future analyses of environmental impact of more 

intensive beef herd systems in the region. 



 

 

 

 



Townsville, Australia 24 March 2019 

 
Mr Sundar Ananthakrishnan 
Journal Manager 
Agriculture, Ecosystems and Environment 

Reference: Manuscript No AGEE22100 

Dear Mr Sundar Ananthakrishnan, 
 

Many thanks for forwarding to us the Reviewers’ comments and full instructions to revise the 

manuscript. We found the comments to be very objective, constructive and helpful, and we 

have done our best to employ them wherever possible for the improvement of the 

manuscript. We describe below our response to Editor and Reviewers’ comments. Italics 

font is used for the comments, while standard font is used for our response.  

We hope that the revised manuscript will be suitable for publication in Agriculture, 
Ecosystems & Environment.  

Points to note 

Editor 

“Both reviewers have critical remarks about this research. It seems that the carbon stocks 
part is weak and not based on new experimental data. I recommend a major revision with a 
good justifications of the changes and choice made”. 

Response: We greatly appreciate the recommendation for major revision of the manuscript. 
To estimate carbon (C) stocks and fluxes at the system level we used field data collected 
over a significant span of time, and in neighbouring savanna sites, by one of the co-authors 
and others. That field data has been published and is widely cited in the text, but had not 
been used previously to assess C balances at the level of production systems. 

We have now revised Table 6 with additional information on soil C accumulation rate per 
year. We also provided in Table 6 the calculated values of: (1) C content of animal feces; (2) 
methane (CH4) emissions from the bull; (3) CH4 emissions from dung of the animals; and (4) 
nitrous oxide (N2O) emissions from dung and urine of the animals (details provided as 
Supplementary material 1). We used these values to estimate the overall C footprint as 
carbon dioxide equivalents (CO2-eq) at system level (Table 6). We have provided the 
needed justification for the used data to estimate the C footprint. 

Changes made in the revised manuscript are highlighted using yellow (Reviewer 1), blue 
(Reviewer 2) and green (our own minor editorial change) colour backgrounds. Compared 
with the original submission, modifications suggested by both Reviewers are also described 
in terms of the new line numbers in the clean copy of the revised manuscript.  

Reviewer 1 

General comments 
 
This manuscript reports results from a study aimed at quantifying the beef cattle 

performance, enteric CH4 emissions and the C footprint of savanna-based beef breeding 

herds subject to conventional weaning (CW) vs early weaning (EW) in Llanos of Colombia.  

It is hypothesized that the management intensive EW system is biologically and 

Revision Notes



environmentally more efficient per unit of output than the traditional extensive CW systems. 

Cattle performance data are from a 5-yr, replicated experiment conducted in the region and 

enteric CH4 emissions from cattle have been modeled using a mechanistic model of which 

the algorithms for estimating CH4 emissions were derived using measured CH4 emissions 

from tropical beef cattle determined by respiratory chamber method in Northern Australia.  

The data related to carbon stocks in the two production systems were based on published 

research conducted in the region and assumed values (although not clearly provided in the 

manuscript). 

Overall, the results are relevant to the readers of AGEE and the scientific and policy 

community and likely to fill a gap in the scientific literature by presenting CH4 emissions data 

from beef cattle production in one of geographically important regions of the world.  

Nevertheless, I have a number of points that should be addressed to improve the clarity of 

the manuscript. 

Response: We greatly appreciate the positive feedback on the scientific value of the results 
reported in the study. We have addressed the comments and suggestions made by the 
Reviewer to improve the clarity and quality of the manuscript.  

“Although it is stated that one of the objectives of the study was 'to quantify the carbon 
footprint (CF) of beef breeding herds subjected to conventional weaning (CW) vs. early 
weaning (EW)' (line 108), it doesn't appear that a 'whole system analysis' has been 
performed.  For example, nowhere in the Materials and Methods authors have explained 
what is the system boundary, what GHG sources included/excluded in the CF calculation, 
and what is the functional unit for expressing the whole systems GHG emissions?  Also, an 
important GHG source contributing to the CF of beef cattle: emissions from manure excreted 
on pasture are not included in this analysis and therefore, the results are incomplete in terms 
of CF of beef cattle in the two production systems compared”.   

“Potentially, there may be appreciable differences in emissions from manure excreted on 
pasture in the two production systems, given that early weaned calves in the EW system 
grazed an improved pasture grass-legume mixture (Andropogon gayanus associated with 
forage legumes (Pueraria phaseoloides, Centrosema acutifolium (lines 189-190) that may 
lead to differences in N content in excreted manure due to biological N fixation in forage 
legumes in the EW system which in turn likely to cause differences in N2O emissions.  This 
need to be addressed to complete the CF of beef cattle”. 

Response: Considerable attention has been given to the important comments and 
suggestions made by the Reviewer. The system boundary has been portrayed in Fig. 2 and 
it is now mentioned in the revised manuscript between lines134 and 135.   
 
We have also used values published by our colleagues (cited in the Supplementary material 

1) and recorded in nearby savanna paddocks to estimate fecal output and reported the 

calculated values of: (1) C content of animal feces; (2) CH4 emissions from the bull; (3) CH4 

emissions from dung of the animals; and (4) N2O emissions from dung and urine of the 

animals. We have not included the contribution of the improved pasture of grass-legume 

mixture to the EW system and this was noted in the M & M (lines 229-230) and Discussion 

(line 513) sections.  

 “It is not clear how soil C balance is estimated.  Although it is mentioned (lines 203-204) that 
C balance was determined by estimated C accumulation in the soil, no information on the 
soil organic carbon sequestration rate is provided”. 
 
Response: We welcome the comments made by the Reviewer because we believe that in 
fact our research can be considered from different angles. The data we used to assume the 



C balance (based on above- and belowground C stocks and soil C accumulation rate per 
year) were from the nearby native savanna field sites. We have now revised the results 
presented in Table 6 with additional data on soil C accumulation rate per year which was 
used to estimate C balance (footprint) at system level. We have provided the needed 
justification for the used data to estimate C balance. It should be noted that the assumptions 
are based on research work published by one of the co-authors (IMR) as cited in the 
manuscript. All the relevant references are included in the Supplementary material 1. 
 
“Furthermore, I would like to suggest Authors could use one functional unit (e.g. a unit of 
beef live weight output such as kg live weight) compare the environmental impact of the two 
systems.  This could potentially simplify the presentation of results in Table 1-5”. 

Response: We understand the Reviewer’s point of view and we are confident that we have 
shown the relevance of a beef functional unit [i.e. kg live weight (LW)]. This is because the 
base model using ordinary least squares revealed the significance of LW fluctuations in adult 
and young cattle to calculate individual dry matter intake (DMI) and CH4 emissions as well 
as to generate multiple environmental outputs per kg LW. Thus, our parametric estimations 
facilitated the comparison of environmental impacts between two contrasting extensive 
production systems not only in terms of individual or cow-calf pairs CH4 emissions (Tables 1 
and 2), but formulating variable intensity and efficiency emission indices using LW in kg as a 
functional unit for output expression (i.e. kg -1 calf born, kg -1 final LW, kg -1 calf weaned; see 
Tables 2, 3, 4 and 5). It is also noteworthy to say that our mechanistic model similarly and 
alternatively uses beef LW gain (LWG) as an efficient unit to derive CH4 intensity (kg kg –1 
LWG) and CH4 efficiency (CO2-eq kg –1 LWG) output indices (See relevant new text between 
lines 308 and 318). Therefore, there are obvious reasons at this stage for not using a unique 
beef environmental unit output because any extensive beef breed system does not 
constitute a homogenous entity.  

Overall, this scientific reasoning on LW ensures, reproducibility and applicability of research 
outcomes as it has been previously demonstrated by Allard et al. (2007), Ramírez-Restrepo 
et al. (2017) and Ramírez-Restrepo and Vera (2019). However, to reflect differences not 
captured by the initial explanatory characteristics of the Excel spread mechanistic model, 
particular equations used to derive DMI and CH4 emissions (Ramírez-Restrepo and Vera 
2019) have been included between lines 194 and 199 in the revised manuscript. In 
summary, we are confident that in presenting those equations, we essentially demonstrated 
the impact of the requested LW functional unit to give further clarity to the manuscript and its 
tabular data in terms of function and the requested characteristics at output scale. 

 “Table 6 should be revised to clarify how C balance was estimated. For example:  

Check the units for: Methane emitted by cow-calf pair (should be: kg CH4 day-1), C emitted 
over inter-calving period (should be: kg ha-1), insert a line to present C emitted from cattle in 
(kg C ha-1 yr-1), most importantly present the value for soil carbon sequestration rate (kg C 
ha-1 yr-1) assumed for this study”.   

Response: Comments from the Reviewer are valued and special attention was paid to 
revise Table 6. Thus, a new Table layout is presented considering the Referee’s input as 
well as some additional information to estimate CO2-eq footprint (kg ha -1 year -1) at system 
level.  

“Additionally, please check for some occasional use of awkwardly long sentences (e.g. lines 
147-154).  Such long sentences could lead to grammatical inconsistencies making it difficult 
to understand”. 

Response: We understand the Referee’s suggestion and the text (lines 163 to 168) is 
revised to improve clarity. 



 
 
Specific comments 
 
Abstract 

“Lines 23-26: Regarding the claim that: 'This paper describes for the first time, use of cattle 
grazing experiments to assess CH4 emissions from savanna-based beef breeding 
systems….' Is it correct? There are at least few previous studies focusing on CH4 emissions 
from savanna-based systems in Northern Australia (Bray et al 2016 The Rangeland Journal, 
2016, 38, 207-218, Bray et al 2014 Animal Production Science, 2014, 54, 1988-1994).  
Perhaps, authors meant to say: this is the first study from this particular region (savannas in 
eastern Colombia). Please clarify and revise accordingly”. 

Response: The important issue has been considered and the word ‘neotropical” has been 
included in the sentence to provide the sentence a specific context.   

“…to assess methane (CH4) emissions from neotropical savanna-based beef breeding 
systems,...”. See line 24. 

“Line 30: The indicator: 'emission efficiencies' is not clear.  Please define”. 

Response: Both intensity and efficiency indices are defined between lines 31 and 32, 
respectively. 

Introduction 

“Line 51-53:  Please add some relevant references to support these statements related to 
savanna system”. 

Response: Fixed. Relevant references as suggested have been included from line 56 to line 
59. 

“Line 56: Should read as: Historically, well-drained savannas in Colombia evolved…” 

Response: Corrected as suggested in line 62. 

“Lines 83-91: This paragraph may be amalgamated with the previous paragraph as both 
culminated in the same conclusion (). For example, the text may be revised as (beginning 
from line 78): 

'…Kleinheisteramp and Habich (1985) conducted a large and intensive on-ranch study to 
characterize existing systems in biological terms, which gave rise to the view that the 
amount and quality of feed resources are the major constraining factors, rather than 
management ability or intensity.  Rivera (1988) confirmed these results by using a designed 
5-year long and large (2,700 ha, 345 cows replicated on a medium-texture and a sandy soil) 
experiment, demonstrating that the introduction of small areas of introduced grass plus 
regular supplementation of complete mineral supplements had a modest but noticeable 
impact on the performance of beef production systems.  This trend was further supported by 
subsequent modelling exercises (Thornton and Vera, 1988) that also addressed the need for 
more intensive management supervision. Nevertheless, none of these studies focused on 
the issue of environmental impact of these systems”.  

Response: The suggestion has been accepted and the text from line 83 to 94 has been 
accordingly improved. 

 



 

Materials and Methods 

“Line 123: it is not necessary to define CW and EW here again, as they are defined in 
line109”. 

Response: Revised the text in line 128. 

“Line 133: should be: …where soil research on C stocks referred in the present study…” 

Response: Revised the text in line 141. 

“Line 139: delete m2; it should read as: …annual precipitation was 2790 mm with 94% of the 
rainfalls recorded…” 

Response: Issue fixed in line 147. 

“Line 147-154:  Within this paragraph, briefly explain that the data used to derive LW-CH4 
emissions and LW-DMI algorithms used in the mechanistic model have been developed 
using Red Belmont Composite X Brahman X Hereford-Shorthorn and Brahman steers in 
respiratory chamber experiments conducted in northern Australia and explained in details in 
Ramírez-Restrepo and Vera (2018).  Then you can continue on to explain that The Excel® 
spreadsheet mechanistic model extends the LW-derived CH4 emissions and dry matter 
intake (DMI) simulation of Ramírez-Restrepo and Vera (2018) adding calculations for…” 

Response: The suggestion is appreciated. A corresponding text has been inserted from line 
155 to line 162 in the updated manuscript. The citations used there Fisher et al. (1987) and 
Ramírez-Restrepo et al. (2014, 2016a, b) have been accordingly added to the list of 
references. 
 
“Also, try to avoid using very long sentences.  For example, the sentence in lines 147 to 154 
tries to cram too much information into one long sentence (102 words!”).   

As example this could be done as follows: 

'The Excel® spreadsheet mechanistic model extends the LW-derived CH4 emissions and 
dry matter intake (DMI) simulation of Ramírez-Restrepo and Vera (2018) adding calculations 
for reproductive parameters (i.e. gestation, lactation and weaning conception intervals) to 
estimate CH4 emissions from suckling weaned calves and stockers until yearlings (24.0 ± 
0.05 months) are sold.  The model estimates CH4 emissions in terms of mass [g or kg per 
animal unit (AU; 450 kg) or per ha] or energy loss basis (MJ per animal unit).  Methane 
emissions were converted to CO2 equivalents (CO2 eq) using the value of 34 as the global 
warming potential (GWP100) factor for CH4 (Myhre et al., 2013; Mueller and Mueller, 2017). 

The phrase: 'in order to evaluate the C footprint impact of beef cow-calf systems' is not 
necessary here since it is stated in the objectives”. 

Response: The constructive criticism is appreciated and the text is modified between lines 
168 and 175. 

“Line 156: Explain the reason for not including emissions from bulls (Line 156-157).  Due to 
small number of bulls in the cattle population?  What is the bulls:cow ratio in these 
systems?” 

Response: We appreciate the comment. In this view a documented response is presented 
between lines 172 and 174. In parallel, the information on bulls in terms of enteric and fecal 



CH4 emission and N2O emission from animal excreta (both urine and dung) is included in the 
Supplementary material 1. 

“Line 158-162:  Revise this awkward sentence.  For example, the sentence could be revised 
as: 

'In the first step, herd structure over the first RC [i.e. gestation (285 days), calving, lactation 
length and weaning] and the second RC (i.e. post-weaning-conception, gestation, calving, 
lactation length and weaning) was determined by the number of cow-calf pairs originally 
managed under CW and EW practices in 1984 (Replicate 1; 9 vs 10) and 1985 (Replicate 2; 
13 vs 16)”. 

Response: The suggestion has been considered and relevant changes to improve the 
sentence has been included in lines 176, 177 and 178. 

“Line 162:  In the second step…” 

Response: Text revised in line 181. 

“Line 197: Explain the basis for using assumed vales indicate where they have been used in 
the analysis”. 

Response: The basis for assumed values is provided in the Supplementary material 1 by 
including the source of information with relevant references (See lines 228-229). 
 
Results 

“Line 229: should be: Daily estimated CH4 emissions (g animal-1)…” 

Response: Revised the text in line 255. 
 
“Line 245: kg head-1” 
 
Response: Revised the text in line 271. 

“Line 251-254:  What is the reason for presenting data in two indices?: 'CH4 emissions 
efficiency' is just a value derived by multiplying CH4 (kg/kg calf born) by the GWP 34?”   

Response: We used two indices because CH4 expressed in CO2-eq is a standard unit for 
measuring C footprints that is the ultimate aim of our study (i.e. evaluate the C footprint of 
beef cow-calf systems at different productive stages). We also consider that previous 
grazing studies by Allard et al. (2007) demonstrated the effect of CH4 CO2eq units on annual 
budgets of C and greenhouse gas (GHG) fluxes in intensive and extensive treatments. 
Under such circumstances, our results also imply the need to reflect that our 34 GWP100 
differs to standard published data that considers 25 as the GWP for CH4 (Menezes et al., 
2016). Accordingly, as the present manuscript is part of a related series of planned peer-
reviewed publications, the current information is required to facilitate the development of a 
systems approach analysis where total emissions from the bulls’ herd must be considered.  
 
Discussion  

“Line 308: should be: …sandier vs heavier soils (6-7 kg ha-1 day-1 vs 18 kg ha-1 day-1…)” 

Response: We are grateful for the suggestion. Nevertheless, the authors consider that the 
actual scientific writing from line 362 to line 336 is appropriate.  

“Line 341-342: Check this sentence for correct English: …may be influenced by…?” 



Response: Revised the text in line 396. 

“Line 389: sinks for C in the absence of…” 

Response: Revised the text in line 445.  

Reviewer 2 

General comments 

“This is another modelling paper which seeks to use scant data to draw conclusions about 
livestock ghg emissions, emissions intensities, and in this case C stocks. The main 
conclusion of the paper appears to be that early weaning systems in Latin savannahs are 
(slightly) more beneficial environmentally. However the (posited) differences are small and 
the assumptions large, bringing into question the value, both practical and theoretical, of the 
exercise”. 

Response: We understand the concern of the Reviewer on the value of the study. We 
consider that the results reported from our study are important because of the following five 
reasons: (1) there is no published experimental data for the neotropical savannas of northern 
South America, based on actual animal performance and outputs using herds that 
approximate commercial practices, including CH4 outputs; (2) the contribution of cattle to the 
calculation of the countries’ GHG balances is controversial, and the extremely limited 
information that is being used so far is based solely on IPCC emission factors; (3) the study 
brings together quantitative field data obtained under highly representative environmental 
and management conditions; (4) the only available method to estimate a system level C 
footprint  is through a modelling exercise, given the very different spatial scales involved in 
savanna-based extensive beef systems; and (5) the authors have used extremely 
conservative estimates, such as maximizing estimated CH4 outputs by using only fertile 
cows (as explained in the paper), and using low estimates of soil and vegetation C stocks. 

In addition, to estimate the C footprint in CO2-eq at system level, we also included the 
contribution of cow-calf pairs and bulls to CH4 emission as well as N2O emission from urine 
and dung of animals. As stated above in the Response to Reviewer 1 comments, this 
information is provided in the Supplementary material 1. 

It is also important to note that the value of the comparison between the two herd 
management systems is that EW is a prototype of a feasible, low cost, but more 
management intensive intervention, an aspect that constitutes a classical trade-off of 
extensive systems. As shown in the Supplementary material 1 and the new text between 
lines 293 and 302, the difference between the two systems over the productive lifetime of the 
system is considerable (Vera and Ramírez-Restrepo, 2017). 

Specific comments 

“Firstly the methodology for deriving CH4 emissions needs explanation, it is simply not good 
enough to cite one of the authors other, recent papers, and say "that's it"  

Response: This constructive comment has deserved special attention for the authors and 
the issue has been resolved as indicated in the response to Reviewer 1 (See new text 
between lines 155 and 162 as well as the related input from line 194 to line 199). 

“A key concern here is that there seems to be no inclusion of energy expenditure from 
locomotion, which would surely be a significant contributor to energy expenditure in an 
extensive system like the one "studied"”. 



Response: We agree with the Reviewer that locomotion is energy expenditure for the 
animal as the issue has been reviewed by several authors (CSIRO, 2007). 

In this scenario, standing (compared with lying), changing body position (double movement 
of lying down and standing again), walking (horizontal component), walking (vertical 
component), eating (prehension and chewing) and ruminating represent to the animal an 
energy cost of 10 kJ day -1, 0.26 kJ day -1, 2.6 kJ km -1, 28.0 kJ km -1, 2.5 kJ h -1 and 2.0 kJ h 
-1, respectively. Thus, 550 kg dairy cow walking 3 km day -1 grazing would expend 500 x 2.6 
x 3 = 3.9 MJ metabolizable energy (ME), but if it was 0.5 km to the shed and she was milked 
twice a day, this would add 2 km. However, distance walked during grazing would be less 
(break feeding), so maybe a total of 4 km; 5.2 MJ day -1. If she had to go up a 50 m (vertical 
distance) hill, this would add 500 x 28 x 0.05 = 0.7 MJ ME 

If the heat of combustion for CH4 is about 55.7 kJ g -1 and the cow emits 21 g CH4 kg -1 DMI, 
then intakes of 8, 12 and 16 kg DM will yield 168, 252 and 336 g CH4 day -1, with heats of 
combustion of 9.3, 14.0 and 18.7 MJ. Thus, ME for grazing for a dry cow might be 3.9/9.3 = 
42% of loss to CH4; a dry cow on hill country where she went up and down 250 m day -1 
would expend (3.9 + 0.7 x 5) = 7.4 MJ day -1 walking; 7.4/9.3 = 80% as much ME as lost 
through CH4. 

In this context, we have not included in our manuscript and/or model any value regarding 
energy expenditure from locomotion because the objectives of the study and our stated 
methodology never considered the quantification of such energy expenditure in our linear 
interpolation. Therefore, we cannot comment further because scientific statements must be 
based on facts rather than on speculative assumptions.  

In parallel, it is relevant to consider that although the efficiency of the use of energy for 
maintenance and LWG can be affected by animal age and feed quality and composition, 
Pinares et al. (2007) found that feed intake rather than feed digestibility in Holstein-Friesian 
heifers is the major factor affecting CH4 emissions. Moreover, it is relevant to say that 
Pinares et al. (2007) reported that across two consecutive years, CH4 emissions (g day -1) 
expressed as overall CH4 yield (% gross energy intake) did not differ between cattle grazing 
under low or high stocking rates ha -1. 

In summary as those heifers and their temperate environment differ to the context of our 
study, to our knowledge, further and more complex studies in extensive neotropical savanna 
beef systems are required to corroborate not only those findings; and accurately elucidate 
the understood criticism regarding the effect of energy expenditure in locomotion vs CH4 
energy losses. 

“Next, there is no rationale for bulls being excluded, but in any case I can think of no 
justification for doing so. Their contribution to GHG are significant, and in the case of 
calculation of emissions intensities, crucial. This is data that MUST be included”. 

Response: We appreciate and respect the Reviewer’s point of view. In this regard and 
considering the above response to Reviewer 1 regarding emissions from bulls in our 
extensive beef systems, it is important to note once more that based on our original 
experimental records, the bulls-cows ratio was 1:25 and each bull was present in the herd 
for 9 months year -1.  

Thus, given that cows were stocked at a ratio of 1:5 ha, the maximum stocking rate of bulls 
in the breeding system is no more than 0.008 bull ha -1 (this is a maximum figure, not 
adjusted for the 3 months during which they do not serve). In other words, on a per cows’ 
herd base, bulls would contribute 0.04 animals. Admittedly, bulls are much heavier than 
cows (about 600 kg at the beginning of the breeding season) but under our extensive 
savanna conditions, they lose approximately 60-100 kg in a period of the mating season; 
nevertheless, we kept the high value of 600 kg throughout the reproductive cycle. 



 

In this context, our calculations do not concur with the Referee’s criticism because using our 
algorithms, a healthy bull over the mating period should produce 210.85 g CH4 day -1, which 
is equivalent to say that the animal is emitting 1.687 g CH4 ha day -1. Therefore, considering 
that those emissions are constant for all the treatments, the possibility of any bias related to 
our present outcomes (Tables 1-5) due to the exclusion of bulls’ emissions is unlikely.  

However, to satisfy the demand from the Referee, those marginal values and a related 
explanatory text to support our decision has been included from line 172 to line 174, while 
lines 468 and 501-502, Table 6 and Supplementary material 1 provides additional relevant 
information.  

“Finally, I see no justification for including conclusions on C stocks in this paper. There is a 
total absence of data from the authors, or previously applying to the operations considered. 
This needs to be removed”. 

Response: We removed the statement on soil C stocks (Comparing C … balances; from 
line 460 to line 463) in the Conclusions section of the reviewed manuscript. Thus, the 
previous and subsequent sentences of that statement are linked now in line 529 (… 
maximum estimates. Our estimates…).   
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ABSTRACT 18 

The savannas of eastern Colombia located in the Orinoco river basin represent 18% of 19 

the Latin American neotropical savannas, and those areas that are tillable and closer to 20 

markets are subject to considerable anthropic pressure in the quest for intensification. 21 

Historically, and even today, beef cattle production constitutes the main land use, and 22 

much of it is subjected to extensive management. This paper describes for the first time, 23 

the use of cattle grazing experiments to assess methane (CH4) emissions from 24 
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neotropical savanna-based beef breeding systems, and with the support of published 25 

research conducted next to them, and estimate of the carbon (C) footprint in carbon 26 

dioxide equivalents (CO2-eq) for the whole system. Over 5 years and covering complete 27 

reproductive cycles, conventional weaning (CW) herd system was compared to an early 28 

weaning (EW) herd system, that represented a modest degree of more intensive savanna 29 

management. Differences were found between the two management practices in total 30 

CH4 emissions, emission intensities [kg CH4 kg 
–1

 calf born and kg CH4 kg 
–1

 liveweight 31 

gain (LWG)] and emission efficiencies (kg CO2-eq kg 
–1

 calf born and kg CH4 kg 
–1

 32 

LWG), that mostly associated with the different lactation lengths. When both herd 33 

systems were carried over until calves, later yearlings, reached to 25 months of age, the 34 

differences in favor of EW breeding herd system were diminished. The calculated C 35 

footprint in (CO2-eq) of both management practices was near neutral subjected to a 36 

number of assumptions and the use of limited published information on savanna C 37 

stocks and CH4 and nitrous oxide (N2O) emissions from soil, and it is posited that both 38 

herd systems were nearly in equilibrium. The available data and results show the need 39 

for further information on the neotropical savanna C stocks and C sequestration 40 

potential of soils of the Orinoco river basin. More reliable datasets regarding below-41 

ground C inputs and CH4 and N2O emissions from soil are needed to provide a useful 42 

basal benchmark for, and approach to, future analyses of environmental impact of more 43 

intensive beef herd systems in the region. 44 

Keywords  45 

carbon footprint, liveweight, methane emissions, Orinoco basin, reproductive 46 

performance, soil emissions 47 

1. Introduction  48 
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Savannas have been extensively managed by humans for different production purposes, 49 

driving ecological processes such as fire frequency and biomass accumulation, and 50 

consequently affecting the carbon (C) cycle (Grace et al., 2006). However, little is 51 

known about the long-term impacts of climate change and altered disturbance regimes 52 

on savanna C fluxes. Reducing C emissions -the so-called “carbon footprint”- is critical 53 

to confront global challenges of both climate change and land degradation. This is 54 

mainly because savanna systems may directly mitigate greenhouse gas emissions by (i) 55 

increasing soil organic C (SOC; Sanhueza and Donoso, 2006; Fisher et al., 2007; Rao et 56 

al., 2015); (ii) reducing ruminant methane (CH4) emissions per unit of livestock product 57 

(Vélez-Terranova et al., 2015; Durmic et al., 2017); and (iii) decreasing nitrous oxide 58 

(N2O) emissions (Byrnes et al., 2017; Chirinda et al., 2019). 59 

The Llanos of Colombia and Venezuela are a significant part (18%) of the neotropical 60 

savannas of Latin America that are subject to strong human pressures (Ayarza et al., 61 

2007). Historically, well-drained savannas in Colombia evolved from natural 62 

ecosystems inhabited by indigenous communities (Navas-Ríos, 1999), to extensive 63 

grazing of beef breeding herds (Huertas-Ramírez and Huertas-Herrera, 2015).  64 

The use of Colombian savannas, in areas that can be tilled, has been rapidly changing 65 

with the agricultural frontier expanding into the region (Vera and Ramírez-Restrepo, 66 

2017), with new land use practices such as intensive grazing (introduced pastures), tree 67 

plantations (oil palm, rubber, and timber), and intensive high input cropping (rice, 68 

maize, soybean, sorghum, sugarcane). Consequently, adaptation and transformation of 69 

agricultural industries in the region lead to changes such as (i) reduction in fire 70 

frequency; (ii) increase in tree cover; and (iii) increase in cattle stocking rates [(SRs) 71 

Etter et al., 2011] among others. Nevertheless, extensive systems persist in the majority 72 

of the non-tillable area, and adoption of technological innovations in these systems 73 
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incur in management constraints such as the required frequent muster of grazing 74 

animals and increased supervision (Vera and Ramírez-Restrepo, 2017).  75 

The Llanos region has not been the subject of detailed and long-term field 76 

experimentation regarding the environmental impact of existing cattle production 77 

systems, and the subject has infrequently been approached by using secondary 78 

information drawn from numerous international sources (Lerner et al., 2017). In the 79 

Brazilian Cerrados, Bogaerts et al. (2017) and Figueiredo et al. (2017) estimated C 80 

balances for a number of surveyed farms, using the Intergovernmental Panel on Climate 81 

Change (IPPC) parameters, but to our knowledge, locally collected long-term data have 82 

not been used for the same purpose in the remaining areas of neotropical savannas. 83 

Using results from a large and detailed on-ranch study, Kleinheisteramp and Habich 84 

(1985) characterized the existing beef production systems in bioeconomic terms and 85 

concluded that the quantity and quality of feed resources are the two major constraining 86 

factors, rather than management ability or intensity. Rivera (1988) confirmed these 87 

results by using a designed 5-year long and large experiment (2,700 ha, 345 cows 88 

replicated on a medium-texture and a sandy soil), demonstrating that the introduction of 89 

small areas of introduced grass plus regular supplementation of complete mineral 90 

supplements had a modest but noticeable impact on the performance of beef production 91 

systems. This trend was further supported by subsequent modelling exercises (Thornton 92 

and Vera, 1988) that also addressed the need for more intensive management 93 

supervision. Nevertheless, none of these studies considered the impact of these systems 94 

on the environment.  95 

Tropical savannas may contribute to the global C sink. An early review by Scurlock and 96 

Hall (1998) noted the importance of above- and below-ground net primary production 97 

(NPP) as a possible contributor to C stocks in grasslands; and Lehmann et al. (2014) 98 
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reported large quantitative differences between savannas in different continents. 99 

Variable, and environment-specific, root:shoot ratios (Mokany et al., 2005) may 100 

contribute to the above differences. 101 

In light of views expressed in the above studies and the lack of substantial funding to 102 

carry out long-term research on sustainable beef production systems’ interventions on 103 

the well-drained savannas, it is necessary to substantiate assertions with a detailed 104 

computer-aided interrogation of medium-term cattle investigations conducted at the 105 

local level. This degree of sound science, elaboration and collaboration has recently 106 

provided the fullest and most up-to-date picture of the productive-environmental impact 107 

of contrasting beef cattle categories in fattening grazing systems (Ramírez-Restrepo and 108 

Vera, 2019), and the biological impact of strategic cow-calf beef grazing operations 109 

(Vera and Ramírez-Restrepo, 2017) in the neotropical savannas of Colombia. 110 

In this scenario, the investigation described here aimed to quantify animal performance, 111 

and differences in CH4 emissions and the C footprint of beef breeding herds subject to 112 

conventional weaning (CW) vs early weaning (EW), where the latter represents a 113 

prototype of a more management-intensive farm system than traditional farming 114 

systems. Data from 5 years of locally conducted field studies were used, complemented 115 

with the modelled C inputs and outputs from each herd system, and supplemented with 116 

published soils research conducted in the same site. In this study, we tested the 117 

hypothesis that the management-intensive EW system is biologically and 118 

environmentally more efficient per unit of output than the traditional extensive CW 119 

systems. Our main objective was to use a combined approach that integrates: (i) long-120 

term field research on animal performance with CH4 emissions from animals managed 121 

under a similar tropical environment; (ii) locally derived estimates of soil C stocks and 122 

annual soil C accumulation; and (iii) published information on CH4 and N2O emissions 123 
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from animal excreta and soil, to provide an initial assessment of C footprint in carbon 124 

dioxide equivalents (CO2-eq) at system level.  125 

2. Materials and methods  126 

2.1. Description of data used for modelling  127 

Data from Brahman (Bos indicus) and crossbred Brahman x San Martinero (native B. 128 

taurus) cow-calf pairs subject to CW and EW farming management over two full and 129 

consecutive reproductive cycles (RCs), replicated twice in consecutive years, were 130 

sourced from the commercial herd at Carimagua Research Centre (CRC: 4
o
36’44.6” N 131 

latitude, 74
o
08’42.2” West longitude) in the Meta Department on the Llanos of 132 

Colombia (Fig. 1). The grazed savanna was moderately managed with fire applied to 133 

different fractions of the paddock (i.e. one or two times per year) as in commercial 134 

farming practice.  Figure 2 shows the model limits and the main variables of the various 135 

management strategies compared. The original database (Vera and Ramírez-Restrepo, 136 

2017) covering the years 1984, 1985 1986 and 1987 contained animal (i.e. cows and 137 

calves) numbers, first and second calving and first weaning dates plus liveweights 138 

(LWs) at approximately 4-monthly intervals and at weaning.  Animal data are common 139 

to an estimated area of 2.38 million ha of savanna in the municipalities of Puerto López 140 

and Puerto Gaitán, 3°55’ to 4°20’ N, and 72°1’ to 72°55’ W, where soils research on C 141 

stocks referred in the present study were also conducted (Vera and Hoyos, 2019). The 142 

fluctuations observed in the present animal dataset are modest and agree with data 143 

collected from on-station (CRC) experiments (Rivera, 1988; Vera and Ramírez-144 

Restrepo, 2017) and on-farm reports (Kleinheisterkamp and Habich, 1985; Vera and 145 

Hoyos, 2019).  146 

2.2. Environmental conditions  147 



7 
 

Mean annual ambient temperature during the field study was 26.5 
o
C ranging from 25.2 148 

o
C in July to 28.1 

o
C in March, while the average annual precipitation was 2,790 mm 149 

with 94% of rainfalls recorded between April and November. Soils at CRC are well-150 

drained sandy loam or clay loam Oxisols (tropeptic haplustox isohyperthermic) with the 151 

following characteristics: moderate to high values of bulk density (1.28 to 1.52 g cm 
–3

), 152 

low values of soil pH (4.30 to 5.18) and available phosphorus (1.30 to 3.65 mg kg 
–1

), 153 

low to moderate values of soil organic matter (SOM; 1.30% to 4.84%), and high values 154 

of aluminum saturation (70% to 90%; Fisher et al., 1994; Rao, 1998; Rao et al., 2001).   155 

2.3. Methane emissions  156 

Recent modelling studies (Ramírez-Restrepo and Vera, 2019) demonstrated a linear 157 

relationship between LW and CH4 emissions (g day 
–1

; Eq. 1), and between LW and dry 158 

mater intake (DMI; Eq. 2) when Belmont Red Composite [Africander (African Sanga) 159 

X Brahman X Hereford-Shorthorn (3/4 B. taurus) and Brahman steers were fed ad 160 

libitum (i.e. 2.1% of total LW; Fisher et al., 1987) on a non-additive DM basis in open-161 

circuit respiratory chambers. Ramírez-Restrepo et al. (2014., 2016a, b) reported the full 162 

details on feeding, metabolic and rumen microbiology studies conducted at Lansdown 163 

Research Station, near Townsville on the east coast of north QLD, Australia.  164 

The Excel
®
 spreadsheet mechanistic model extends the LW-derived CH4 emissions and 165 

DMI simulation of Ramírez-Restrepo and Vera (2019) by adding calculations for 166 

reproductive parameters (i.e. gestation, lactation and weaning-conception intervals) to 167 

estimate CH4 emissions from suckling weaned calves and stockers [Least squares mean 168 

± standard error of the mean (SEM); 10.1 ± 1.71 months of age] until yearlings (24.0 ± 169 

0.05 months) are sold. The model estimates CH4 emissions in terms of mass [g or kg per 170 

day, ha, animal unit (AU; 450 kg)], LW unit or energy expenditure basis (MJ per animal 171 

unit).  Methane emissions were converted to CO2-eq using the value of 34 as the global 172 
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warming potential (GWP100) factor for CH4 (Myhre et al., 2013; Mueller and Mueller, 173 

2017). Methane emissions (i.e. 210.8 g day 
– 1

) from Brahman bulls (Mean; 600 kg LW) 174 

at 1:25 bull to female ratio (Rivera, 1988; Bernal Adan, 2010) were small at the system 175 

level given the SR used. Complementary information on reproductive performance is 176 

also presented in an Excel
®
 file (Supplementary material 1).  177 

For simplicity, the procedure followed four steps. In the first step, herd structure over 178 

the first RC [i.e. gestation (285 days), calving, lactation length and weaning] and the 179 

second RC (i.e. post-weaning-conception, gestation, calving, lactation length and 180 

weaning) was determined by the number of cow-calf pairs originally managed under 181 

CW and EW practices in 1984 (Replicate 1; 9 vs 10) and 1985 (Replicate 2; 13 vs 16). 182 

In the second step, cows’ conception LWs in the first RC and cows’ weaning LWs in 183 

the second RC were derived by regression (Eq. 3 and Eq. 4) from pooled data at CRC 184 

(Rivera 1988; Vera et al., 1993, 2002). Calving-weaning intervals for the second RC in 185 

CW and EW for 1984 and 1985 herds were respectively assumed from those weaning 186 

practices followed at CRC in 1986 (319 ± 29 days vs 93 ± 4 days) and 1987 (319 ± 29 187 

days vs 86 ± 5 days). 188 

In the third step, recorded calves’ LWs in the first and second RCs were apportioned to 189 

monthly growth rates, DMI and CH4 emissions up to 25 months. However, emissions 190 

are considered only after 56 days of age (Rey et al., 2014; Huws et al., 2018). Targeted 191 

weaning LWs for CW in the second RC were simulated from pooled savanna data (Eq. 192 

5; Rivera, 1988) or respectively assumed for EW 1984 and 1985 herds from 1986 (68 ± 193 

13 kg) and 1987 (81 ± 9 kg) weaning farming routines (Vera and Ramírez-Restrepo, 194 

2017).  195 

The resulting predictive equations are as follows: 196 

Eq 1.  197 
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CH4 g day 
-1

 = 16.176 (± 21.0879) + 0.324 (± 0.0577) LW 198 

r
2
 = 0.663, P < 0.0001; CV = 16.78; r.s.d = 30.82; r = 0.814, P < 0.0001 199 

Eq. 2.  200 

DMI = 2.216 (± 1.3156) + 0.014 (± 0.0036) LW   201 

r
2
 = 0.491, P < 0.01; CV = 18.94; r.s.d = 1.34; r = 0.701, P < 0.01 202 

Eq. 3.  203 

Conception LW = - 14.447 (± 67.082) + 1.142 (± 0.210) weaning LW 204 

r
2
 = 0.786, P < 0.001; CV: 6.83; r.s.d = 45.49; r = 0.886, P < 0 .001 205 

Eq. 4.  206 

Weaning LW = 77.597 (± 44.407) + 0.687 (± 0.126) conception LW 207 

r
2
 = 0.786, P < 0.001; CV: 6.83; r.s.d = 35.29; r = 0.886, P < 0.001 208 

Eq. 5.  209 

Calf weaning LW = -91.000 (± 99.529) + 9.590 (± 3.874) birth LW 210 

r
2
 = 0.605, P = 0.06; CV: 6.76; r.s.d = 12.98; r = 0.777, P = 0.06 211 

In the final step, the model accounted for environmental impact from EW calves 212 

considering effects of body growth and SR while grazing improved pastures until calves 213 

on savanna were conventionally weaned. Early weaned calves grazed improved forage 214 

grass, Andropogon gayanus associated with improved forage legumes, either Pueraria 215 

phaseoloides (146 days; 1984) or Centrosema acutifolium (148 days; 1985), after which 216 

they joined their contemporary CW counterparts in stockers’ herds and grazed on 217 

savanna for 441 additional days (Vera and Ramírez-Restrepo, 2017). The only external 218 

physical input used in these systems was the provision of mineral supplements whose C 219 
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footprint is also included in the present work to assess C balance (Supplementary 220 

material 1). 221 

2.4. Estimation of carbon stocks and carbon footprint in CO2-eq  222 

Estimation of differences in C stocks and C footprint in CO2-eq between CW and EW 223 

strategies of savanna management was based on both published reports and assumed 224 

values. Soil organic C stocks were determined as described by Fisher et al. (1994). Net 225 

primary productivity of savanna biomass of both above-ground (Fisher et al., 1998; 226 

Rao, 1998; Rao et al., 2001; Grace et al., 2006) and below-ground (Rao, 1998; Rao et 227 

al., 2001; Trujillo et al., 2006) were used to estimate the C footprint. Carbon 228 

concentration in the savanna biomass was estimated as 40%, while the C footprint was 229 

estimated based on CH4 emissions of the breeding herd including bull emissions, CH4 230 

and N2O emissions from animal excreta (dung and urine) embracing the bull and the 231 

estimated C accumulation (in CO2-eq) from both shoot and root biomass into soil 232 

(Supplementary material 1). Carbon stocks in the A. gayanus pastures are not included 233 

in the calculations that followed. 234 

2.5. Statistical analysis 235 

Data were analyzed using the Statistical Analysis System (SAS, University Studio 3.5, 236 

Cary, NC, USA). Measurements of LW, DMI, calculated CH4 emissions and derived 237 

intensity and efficiency emission indices were analyzed using the GLIMMIX procedure. 238 

The linear fitted model included the fixed effects of replicate (i.e. 1 and 2; years 1984 239 

and 1985), weaning practice (i.e. CW and EW), RC (i.e. 1 and 2), the interactions 240 

between weaning practice and RC; and between replicate, weaning practice and RC. 241 

These analyses included cow as random effect.    242 

Analysis of variance for post-weaning conception (dry) periods were assessed using the 243 

MIXED procedure, with a fitted linear model that considered the effects of replicate, 244 
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weaning practice and the replicate by weaning practice interaction. Predictive equations 245 

and correlation values between (i) conception and weaning LW; and (ii) calf weaning 246 

LW and birth were obtained based on the Rivera (1988) and Vera et al. (1993, 2002); 247 

and Vera and Ramírez-Restrepo (2017) datasets, respectively using the REG and CORR 248 

procedures. Results are presented as least squares means (LSM) and their standard 249 

errors of the means (SEM), unless otherwise noted, and precise P-values are shown 250 

when available.  251 

3. Results 252 

Cows’ mean LWs and days taken to reach different reproductive events determined the 253 

amounts and timing of CH4 emissions, and these differences are shown in Fig. 3. During 254 

gestation, LW was increased by conceptus growth, while the design of the experiments 255 

and the following modelling approach influenced (P < 0.0001) calves’ LW at calving 256 

and weaning between CW (25.5 ± 0.22 kg and 152.2 ± 2.64 kg) and EW (24.0 ± 0.20 kg 257 

and 82.1 ± 2.50 kg) treatments, respectively. 258 

Daily CH4 (g animal 
–1

) emissions at specific reproductive points and phases are shown 259 

in Table 1. At conception, there was a RC x weaning practice interaction (P < 0.05), 260 

while the RC x weaning routine x replicate interaction was stronger (P < 0.001). 261 

Gestation values showed that the RC x weaning practice interaction (P < 0.0001) and 262 

the RC x weaning routine x replicate interaction (P < 0.01) contributed to the 263 

explanation of the data. However, we did not detect differences at calving between 264 

replicates or due to the RC x weaning routine interaction, whilst weaning practices and 265 

the plotted RC x weaning routine x replicate interaction had a proportionate effect (P < 266 

0.05).  267 

The RC x weaning routine x replicate relation had effects (P < 0.05) on emissions over 268 

the lactation stage. Similarly, although there are no direct field CH4 emissions data to 269 
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compare the simulation against, it does illustrate the effect of weaning treatment (P < 270 

0.05) and the interactions between RC and weaning practice, and among RC x weaning 271 

routine x replicate (P < 0.0001). On the whole, given the weaning settings used in this 272 

simulation, the model indicates a significant variation among the RC, replicate, and 273 

weaning treatment effects and their interactions. Emissions during the dry empty period 274 

in the first RC was similar among treatments. 275 

Cumulative CH4 emissions (kg head 
–1

) over the gestation phase were associated with 276 

variation (P < 0.01) in the RC x weaning scheme interaction (Table 2), whilst emissions 277 

during the lactation period were (P < 0.0001) affected by replicate, weaning activities 278 

and all the interaction terms. As is indicated in Table 2, this pattern (P < 0.0001) was 279 

similarly followed by calves’ emissions and their derived intensity and efficiency 280 

indices.  281 

Averaged indices of CH4 emissions intensity (kg kg 
–1

 calf born) and efficiency (kg 282 

CO2-eq kg 
–1

 calf born) were higher (P < 0.0001) in CW calves (0.48 ± 0.005 and 16.46 283 

± 0.190) than in EW calves (0.10 ± 0.005 and 3.46 ± 0.182). Values over the weaning-284 

conception period were similar.  285 

Cow-calf pairs’ CH4 emissions in Table 3 exhibited a consistent weaning practice effect 286 

(P < 0.0001) across all measured parameters. However, interaction effects influenced to 287 

a lesser extent emission profiles and derived emission indices. Overall, indices of CH4 288 

emissions intensity (kg kg 
–1

 calf born) and efficiency (kg CO2-eq kg 
–1

 calf born) were 289 

larger (P < 0.0001) for CW (3.74 ± 0.057 and 127.19 ± 1.950) than for EW (2.47 ± 290 

0.055 and 84.20 ± 1.870) treatments.  291 

Estimates of CH4 emissions from calves at a comparable commercial stocker age for the 292 

first and second RCs are presented in Table 4. Overall, irrespective of expression units, 293 

daily emissions were significantly different between replicates, but similar in their 294 
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derived indices. Nevertheless, variation between weaning practices and all interaction 295 

effects were significantly different across all modelled issues. There were lower (P < 296 

0.0001) absolute CH4 efficiency indices (kg CO2-eq kg 
–1

 calf final LW) in CW (2.30 ± 297 

0.015) calves than in their EW (2.88 ± 0.015) counterparts.  298 

To summarize, the results of the present analyses on enteric CH4 emissions showed very 299 

large practical differences (5 fold) that are significant (P < 0.0001) between 300 

management weaning practices in terms of CH4 intensity and efficiency absolute LSM 301 

indices per kg of calf born (Table 2). We also found a 18.5% difference in kg CO2-eq 302 

per calf weaned (Table 3), and 24.9% difference per calf FLW (Table 4), parameters. 303 

Similarly, although there were no significant differences in cumulative CH4 emissions 304 

over the reproductive cycles (i.e. gestation plus lactation) of cows (Table 2), when 305 

expressed on a per calf born emission index, the differences amounted to 79%, 306 

indicating large differences with significance for improving both biological and 307 

environmental efficiencies at a system level.    308 

Table 5 mirrored the effects on key aspects of CH4 emissions from yearlings. The 309 

comparison demonstrated the differential impact of weaning treatments on the measured 310 

variables but also, and more importantly, the critical role of the combined effects of 311 

animal LWs, reproduction and management variables on the dynamics of both weaning 312 

systems.  313 

Using the LW change as a functional unit, complementary derived CH4 intensity (kg kg 314 

–1
 LWG) and CH4 efficiency (CO2-eq kg 

–1
 LWG) indices were lower in CW than in 315 

EW practices at a comparable commercial weaning age (0.1023 ± 0.0012 and 3.47 ± 316 

0.042 vs 0.1371 ± 0.0012 and 4.66 ± 0.040, P < 0.0001) and from birth to yearling age 317 

(0.2161 ± 0.0004 and 7.34 ± 0.014 vs 0.2177 ± 0.0004 and 7.40 ± 0.013, P < 0.01). In 318 

contrast, the respective emission indices were higher for CW than for EW treatments 319 
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over the stocker-yearling phase (0.4000 ± 0.0045 and 13.59 ± 0.155 vs 0.2880 ± 0.0045 320 

and 9.79 ± 1.468, P < 0.0001). 321 

Differences observed in animal performance between the CW and EW s while grazing a 322 

savanna are shown in Table 6. The values of average annual LWs were slightly higher 323 

with CW than EW, while EW markedly reduced (P < 0.05) the inter-calving period 324 

(Vera and Ramírez-Restrepo, 2017). 325 

Estimated C stocks and C balance for fertile beef cows with suckling calves subjected to 326 

CW and EW strategies are listed in Table 6. The values of CH4 emitted by cow-calf 327 

pairs and C emitted over the inter-calving period were lower with EW than with CW 328 

management system. To estimate C balance based on above-ground and below-ground 329 

biomass, we assumed similar values for both CW and EW management systems. The 330 

net sources and sinks of C in CW and EW breeding herd management systems were 331 

estimated by summarizing the data from: (a) changes in CH4 emissions from animals 332 

and their excreta; and (b) changes in above-ground and below-ground C including root 333 

turnover and soil C accumulation (using valuers from the studies conducted in nearby 334 

experimental sites). We also included de C contribution from both urine and dung and 335 

the CH4 and N2O emissions from soil in the estimation of C footprint in CO2-eq at 336 

system level (Supplementary material 1). Our conservatively estimated C footprint in 337 

CO2-eq of the CW and EW systems suggest a slightly reduced C footprint with EW 338 

compared to the CW system (Table 6). 339 

The magnitude and variability in the parameters recorded and in those simulated can be 340 

judged from the standard errors in Tables 1-5, and in the supplementary material 1. 341 

4. Discussion 342 

The present study dealt with a more complex production-environmental scenario than 343 

that quantified by Ramírez-Restrepo and Vera (2019) that referred to animals gaining 344 
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weight without the complications of physiological dynamics characteristic of fertile, 345 

breeding cows during complete RCs. In this context, McAuliffe et al. (2018) noted that 346 

emissions, C balances and life cycle assessments of animal production systems are most 347 

frequently carried out based on aggregate data from farm surveys (Gaitán et al., 2016) 348 

or stochastic simulation approaches (Toro et al., 2017). On the contrary, analyses are 349 

seldom based on actual, individual, animal performance (McAuliffe et al., 2018) and 350 

even less frequently, on observations of individual animals replicated over long periods 351 

of time (Ramírez-Restrepo and Vera, 2019), an approach that allows assessment of 352 

within herd, and between years, variability (Tables 1-5 and supplementary material 1). 353 

Cows’ LWs were relatively low, and comparable to those reported by Kleinheisterkamp 354 

and Habich (1985) for ranch animals and also by Rivera (1988) in a large long-term and 355 

replicated grazing experiment. Liveweight showed large oscillations associated with 356 

changing physiological states, but the effect of weaning treatments was small even 357 

when statistically significant, with the largest difference between CW and EW 358 

amounting to no more than 2% that is probably indicative of the limited potential to 359 

increase cows’ LWs based exclusively on the native savanna (Fisher et al., 1992). On 360 

the contrary, there was a large, and cumulative, difference in the length of the RCs 361 

imposed by the design of the experiment that required different lactation lengths in CW 362 

vs EW. This effect was compounded by cows on savanna being unable to reconceive 363 

until after 2-3 months elapsed from weaning, but the interval was shorter in EW than in 364 

CW, a finding generally encountered in extensive beef tropical savanna systems in 365 

northern Australia (Dixon et al., 2011; Fordyce et al., 2014), and that leads to higher 366 

reproductive performance per animal and per ha in EW. Low LW’s were likely due to 367 

aggregate effects of poor savanna daily growth rates in sandier and heavier soils (6-7 kg 368 

ha 
–1

 vs 18 kg ha 
–1

; Rivera, 1988; Rao et al., 2001), and low nutritive value, which 369 

contribute to long inter-calving intervals. 370 
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Liveweight fluctuations, empirical and theoretical equations, and the nature of datasets 371 

emphasize the usefulness of deductive estimations CH4 emissions from beef cattle in 372 

smallholder (Ramírez-Restrepo et al., 2017; Goopy et al., 2018) and neotropical 373 

savanna (Ramírez-Restrepo and Vera, 2019) farming systems. This may explain why 374 

our results provided evidence to support the view that physiological events and weaning 375 

strategies in extensive cow-calf herd systems heavily influence the dynamics of CH4 376 

emissions. However, our C estimates are not consistent with the C aggregated modelled 377 

work of Etter et al. (2011) in the Colombian Llanos. This is mainly driven by SRs in 378 

their work exceeding by 36% the values from our field work, and their simultaneous use 379 

of CO2
-
eq emission factors derived from Canadian-temperate dairy beef (B. taurus) 380 

cattle fed on mixed-balanced diets that do not represent the interaction among quality of 381 

DMI, cattle genetics, ruminant physiology and farming practices that were observed on 382 

neotropical savannas. This overestimation of emissions has strong implications for C 383 

cycle analysis and impacts on climate discussions because in extensive tropical beef 384 

systems, B. indicus and crossbred B. indicus x B. taurus cattle rather than temperate 385 

dairy cattle interplay naturally with inhabitants and land resources to become 386 

competitive and sustainable (O’ Neill et al., 2013; Ramírez-Restrepo and Charmley, 387 

2015; Vandermeulen et al., 2018a, b).  388 

In this connection, the overall picture emerging from our results is in agreement with 389 

Ku-Vera et al. (2018) study that measured CH4 yields (g CH4 kg
 –1

 DMI) feeding ad 390 

libitum on low-quality tropical grasses that were discretely supplemented to crossbred 391 

B. indicus x B. taurus heifers. Ku-Vera et al. (2018) reported 18.07 g CH4 kg 
–1

 DMI 392 

from 287 kg (range 204-350) cattle, while irrespective of treatments and reproductive 393 

factors our approach linked an averaged CH4 yield of 18.21 g CH4 kg 
–1

 DMI from 340 394 

kg (range 280-400) cows. Analogously, a simulated median CH4 yield of 17.97 g CH4 395 
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kg 
–1

 DMI from 347 kg (range 285-407) of old cull cows was recently reported 396 

(Ramírez-Restrepo and Vera, 2019).  397 

This means that outside the tropics, those CH4 yields are unlikely to be achieved in 398 

pastoral conditions mainly due to differences in genetic x environmental x diet x 399 

management interactions (O’Neill, 1995; O’Neill et al., 2016; Vandermeulen et al., 400 

2017). Adding together CH4 yields from young and mature dairy cattle (Ramírez-401 

Restrepo et al., 2016c) reinforce the notion that extensive soil-grass-beef C systems may 402 

be influenced by, but not limited to, the biodiversity and methanogenic role of improved 403 

forage grasses and legumes (Sanhueza and Donoso, 2006; Vélez-Terranova et al., 2015; 404 

Durmic et al., 2017).  405 

Thus, our overall annual CW and EW CH4 estimates (kg head 
–1

 year 
–1

) for breeding 406 

(i.e. gestation plus lactation) cows (39.20 ± 0.506 vs 42.74 ± 0.476; P < 0.0001); 407 

weaning-conception period (42.81 ± 0.928 vs 42.73 ± 0.895; P > 0.05); commercial 408 

weaned stockers (15.35 ± 0.194 vs 14.00 ± 0.185; P < 0.0001); stocker-yearlings (27.59 409 

± 0.328 vs 25.32 ± 0.311; P < 0.0001); and yearlings  (22.42 ± 0.263 vs 20.56 ± 0.250; 410 

P < 0.0001) raise questions about the accuracy of the CH4 emission Tier 1 default factor 411 

(56 kg head 
–1

 year 
–1

) provided by IPCC (2006) to estimate beef C footprints on the 412 

Colombian neotropical savannas.  413 

Therefore, there is a need to consider the potential effect of these differences and the 414 

geographical extrapolation of those values in the national GHG inventory by the 415 

Institute of Hydrology, Meteorology and Environmental Studies [IDEAM (2016)]. 416 

Secondly, differences between CW and EW on an annual basis are small in absolute 417 

terms, although some are significant. Nevertheless, the large temporal difference in Fig. 418 

3 between the two herd systems clearly indicates that the differences favor the 419 

biological, and also the environmental efficiency of EW if considered over the lifetime 420 



18 
 

of the breeding cows (Supplementary material 1). In effect, the data in Table 6 shows 421 

that CW emits 46% more C in each inter-calving period than EW, and that over 422 

comparable periods (507 days), EW weans 2 calves for each 1.49 of CW. Interestingly, 423 

another complex aspect of these comparisons relates to the systems’ boundaries adopted 424 

since outputting born and weaned calves vs producing 2.5 years old yearlings give rise 425 

to, or mask, differences between systems in all of the biological and environmental 426 

indices examined, but the residual effect of the respective inter-calving periods persists. 427 

In our view, these aspects therefore reinforce the need to consider the limits of the 428 

various feasible production systems before making broad generalization. 429 

Further, given that our LW-derived CH4 flux model is based on detailed field records of 430 

individual animals and long-term knowledge of neotropical extensive beef farming 431 

systems, current biological and environmental simulated outcomes could be scaled up to 432 

an additional 10 million ha of savanna in the Vichada Department of the Colombian 433 

Orinoco river basin. This is particularly important if differences in carrying capacity are 434 

taken into account (Bernal Adan, 2010). Nevertheless, in the development of knowledge 435 

and for the foreseeable future, there is a need, therefore, to tie the uniqueness of this 436 

study to mirrored rural spaces without promoting further expansion of the beef industry 437 

on those fragile and diverse socio-cultural savanna ecosystems.  438 

Aboveground standing biomass values from native savanna in the Llanos of Colombia 439 

and Venezuela ranged from 1.2 to 4.8 megagram (Mg) ha 
–1

 (without fertilizer 440 

application) and with a maximum value of 8.88 Mg ha 
–1

 with uneconomical fertilizer 441 

application (Rao et al., 2001). Data on annual rate of soil C accumulation under native 442 

savanna are limited because this requires information on NPP based on production, 443 

turnover and decomposition of above-ground and below-ground biomass. Long et al. 444 

(1989, 1992) found NPP values from five natural grassland sites in the tropics to range 445 
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from 0.14 to 10 kg m 
–2

 year 
–1

 (0.61 to 5.68 Mg ha 
–1

 of aboveground standing 446 

biomass) of DM indicating that all five sites were potential sites of net C accumulation. 447 

In the absence of fires, they noted accumulation of 144 g m 
–2

 year 
–1

 C, and 40 g m 
–2

 448 

year 
–1

 C with occasional fires (0.5 year 
–1

). They also found a net loss of 70 g m 
–2

 year 449 

–1
 C with more frequent fires and drought, suggesting that the balance, in terms of the 450 

sites being a sink or source of C, was delicate. These studies and Grace et al. (2006) 451 

indicated that the grass-dominated communities have the potential to act as significant 452 

sinks for C in the absence of fire or where fire frequency is low. Armenteras et al. 453 

(2005) estimated that burned areas during the 2001 dry season amounted to 5.18% of 454 

the Colombian eastern savannas, but Romero-Ruiz et al. (2010) noted very large year-455 

to-year variation with an average of 24%. This wide range reflects in part, differences in 456 

methodology and calculation algorithms.  457 

Savanna C fluxes are highly seasonal, with fire causing high inter-annual variability. 458 

Fire has the potential to alter soil C storage by influencing rates of NPP, C allocation 459 

patterns, and rates of OM decomposition (Ojima et al., 1994). But fire is also known to 460 

improve biodiversity in native savanna (Abreu et al., 2017). The net C emissions from 461 

savanna fires in Colombia have been diminishing with the changing land use trends in 462 

both absolute terms and per unit area, because the more fertile areas with higher 463 

biomass are undergoing a faster conversion (Etter et al., 2011). However, this is largely 464 

compensated by CH4 emissions from increased cattle SRs in the improved pastures 465 

replacing the savannas, notwithstanding the potential C sequestration of some sown 466 

pastures (Fisher et al., 1994). Management effects on C stocks and fluxes across the 467 

Orinoco savannas were estimated by San José and Montes (2001) and they concluded 468 

that the Orinoco system was an atmospheric sink of -17.53 million metric tons (Tg) C 469 

year 
–1

.  470 
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The IPCC (2006) has provided a framework for estimating and simulating emission 471 

reductions resulting from grassland management. The magnitude of the C footprint 472 

associated with the production of any livestock product from savanna varies depending 473 

on the extent of the system selected, which defines the up and downstream processes 474 

that are included in the assessment. The C footprint calculated in the present paper from 475 

enteric CH4 emissions from cow-calf pairs and the bull amounted to 3,580 and 4,832 kg 476 

CO2-eq for a full RC (i.e. interval between two consecutive conceptions) for EW and 477 

CW, respectively. These figures should be viewed as an upper estimate, since beef 478 

breeding herds are also composed of replacement heifers of 1-3 years of age, non-fertile 479 

cows, and old cull cows with lower nutrtional requirements and emissions. Cows may 480 

represent up to 63% of the females in the herd, but only half of them raise a calf in any 481 

given year under extensive management (Corporación Colombiana de Investigación 482 

Agropecuaria [CORPOICA, 1998]; De Armas, 2005; Ezanno, 2005) and calved, 483 

lactating cows contribute the most to herd emissions (Casey and Holden, 2006). A 484 

somewhat more accurate figure for CO2-eq emissions of the full breeding herd can be 485 

estimated using the figures presented above for bred cows and empty, non-lactating 486 

cows, and those of Velásquez and Ríos (2010) and Ramírez-Restrepo and Vera (2019) 487 

for replacement heifers and cull cows, yielding 153 kg C ha over the full RC for a herd 488 

with 63% of breeding cows. These estimates should be considered relatively high and 489 

conservative values for herds bred and maintained exclusively on savannas based on 490 

clay-loam soils and SRs of 0.20 cows ha 
–1

. Sandy-loam soils with a much reduced 491 

carrying capacity (0.10-0.15 cows ha 
–1

) would exhibit correspondingly lower values of 492 

kg CO2-eq ha 
–1

. 493 

The savannas on clay-loam soils have a C stock of 180-200 Mg ha 
–1

 to a depth of 1 m 494 

(Fisher et al., 1994), whereas above- and below ground biomass C and that of litter may 495 

amount to 2.2 Mg ha 
–1

 (range 1-5; Rao et al., 2001; Trujillo et al., 2006). Fire will of 496 
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course have a dramatic effect on aboveground biomass, but in absence of yearly fires 497 

(Grace et al., 2006), the daily growth rate of native vegetation (Rao et al., 2001), 498 

together with its low nutritive value, result in utilizaton rates as low as 20% leading to 499 

rapid accumulation of rank forage. Numerous plant traits influence  how plant biomass 500 

affect C sequestration, as reviewed by De Deyn et al. (2008). Reliable and repeatable 501 

estimates of C sequestration under savannas are scarce (Grace et al., 2006; Trujillo et 502 

al., 2006; Fisher et al., 2007), but the latter authors found that SOC contributed by roots 503 

after 1 year of decomposition in the soil amounted to 1.1 Mg ha 
–1

 year 
–1

. If this value 504 

is applied to the A. gayanus pastures used for the EW calves, the C footprint of the EW 505 

strategy would be substantially improved. Soil C contributes substantially more to total 506 

C stock than does biomass C (Wise et al., 2009). We used a conservative value of 150 507 

kg CO2-eq ha 
-1

 year 
-1

 for soil C sequestration rate to estmate the C footprint of both 508 

systems. 509 

The details on estimation of enteric and fecal CH4, and N2Oemissions from dung and 510 

urine are listed in Supplementary material 1. In the estimation of overall C footprint for 511 

each system, we have also inlcude the contribution of emissions from the bull. We 512 

estimated a value of 242 kg CO2-eq fecal CH4 ha 
-1

 year 
-1

 using the emission factor 513 

value of 0.034% from Zhu et al. (2018). We estimated fecal N output to 3.81 kg N ha 
-1

 514 

year 
-1

. Using the N2O emission factor of 0.0015 g of N g 
-1

 of dung from Lessa et al. 515 

(2014) and the GWP100 value of N2O of 298 (Zhu et al., 2018), we calculated a value of 516 

0.471 kg CO2-eq ha 
-1

 year 
-1

.  Based on the published values of Whitehead (2000), we 517 

estimated that the N output from urine is 15.33 kg N cow 
-1

 year 
-1

 and using the N2O 518 

emission factor for urine of 0.012 g of N g 
-1

 of urine (Lessa et al., 2014), we calculated 519 

a value of 11.71 CO2-eq ha 
-1

 year 
-1

. We used the published values from Castaldi et al. 520 

(2006) and estimated the emissions from soil (separately for both dry and wet seasons) 521 

of CH4 as 26.2 CO2-eq ha 
-1

 year and N2O as 518 kg CO2-eq ha 
-1

 year 
-1

. Using these 522 
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values and not taking into account of the possible contribution of the A. gayanus 523 

pastures, the presently calculated C footprint of both CW and EW systems is near to 524 

neutral with small positive values, which is consistent with the sustainable use of these 525 

savannas, under extensive management, that has persisted for over 200 years. From a 526 

broader perspective, this environmental, productive, profitable and socio-cultural 527 

dynamic coexistence remarkably extends our understanding of natural beef herd 528 

farming systems in terms of eco-efficient stability. This is an important sustainability 529 

issue that needs to be maintained in the foreseeable future as oulined by Tedeschi et al. 530 

(2015). 531 

5. Conclusions 532 

The present study is the first one conducted in the tropical savannas of northern South 533 

America using 4-5 years data collected locally in designed, medium-term grazing 534 

experiments using records of individual animals. Cattle management systems used in 535 

this study closely resembled to what was recorded in long-term ranch surveys in the 536 

region, while the savannas used experimentally are representative of those commonly 537 

found on medium-texture soils, that were subjected to comparable management. In 538 

parallel, CH4 emissions were derived from similar phenotypical cattle and plant 539 

resources, and therefore, we are confident that they constitute reliable maximum 540 

estimates. Our estimates are conservative, since they derive only from bred, lactating 541 

cows that are the most demanding animals and are also the largest CH4 emitters in the 542 

commercial herds. There is clearly a need for a larger database regarding C stocks in the 543 

savannas and their rates of change, particularly for belowground C balance and also 544 

emissions from soil under varying management strategies. Similarly, C emissions from 545 

full herds composed of the numerous breeds, types, ages, and LWs commonly 546 

encountered in commercial ranches need to be estimated, particularly as systems 547 
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intensify with the incorporation of fertilized sown pastures and other feed resources 548 

with varying impacts on the systems’ performance, demography, C stocks, C 549 

sequestration rate in soil and CH4 and N2O emissions from soil. Intensification will 550 

affect the herd structure over time, thereby modifying also the balance between physical 551 

inputs and outputs, a situation best dealt with via simulation modeling. 552 
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Table1  830 
Effects of conventional (CW) weaning or early weaning (EW) savanna farming practices on calculated methane (CH4) emissions (g day 

– 1
 animal) from cows 831 

and calves across two reproductive cycles (RC) in each of the two temporal replicates in mixed herds of commercial Brahman (Bos indicus) and Brahman 832 
crossbred cattle.  833 

 834 

 Replicate 1  Replicate 2  Effects 

 CW EW  CW EW  RP Weaning RC x Weaning  RC x Weaning x RP  

Cows  9 10  13 16      

First conception  115.3 ± 4.32h 125.1 ± 4.10a  123.6 ± 3.59a 121.3 ± 3.24j  NS NS * *** 

Gestation phase 127.5 ± 2.68d 140.1 ± 2.54g  139.8 ± 2.23i 139.1 ± 2.01c   .08 NS **** ** 

Calving 137.5 ± 3.34a 127.9 ± 3.17j  127.0 ± 2.78h 125.7 ± 2.50f  NS * NS * 

Lactation stage 122.2 ± 3.22d 115.6 ± 3.06d  114.3 ± 2.68h 112.3 ± 2.41h  NS NS NS * 

Weaning 107.0 ± 2.96h 133.4 ± 2.81g  132.5 ± 2.46g 131.9 ± 2.22g  * * **** **** 

Dry empty period 118.9 ± 3.78 117.1 ± 3.78  118.3 ± 3.15 118.1 ± 3.03      

Cows 9 9  13 14      

Second conception 130.9 ± 4.32g 120.9 ± 4.20a  122.8 ± 3.59a 125.7 ± 3.34i      

Gestation phase 135.8 ± 2.68d 128.2 ± 2.65h  135.4 ± 2.23j 132.4 ± 2.12c      

Calving 139.7 ± 3.34a 134.9 ± 3.34i  146.1 ± 2.78g 138.4 ± 2.67e      

Lactation
† 
stage 130.0 ± 3.22c 124.4 ± 3.16c  130.2 ± 2.68g 127.7 ± 2.52g      

Weaning
†
 120.2 ± 2.96g 113.3 ± 2.88h  114.33 ± 2.46h 116.6 ± 2.29h      

Suckling calves           

First weaning 62.5 ± 1.56f 52.5 ± 1.48g  62.6 ± 1.30f 38.3 ± 1.17j  ** **** **** **** 

Second weaning
†
 68.5 ± 1.56e 39.4 ± 1.55h  68.3 ± 1.30e 40.8 ± 1.24i      

 835 
† Modelled data. Least squares means (± SEM) values between similar parameters bearing different letters in the same column and replicate (RP) are significantly different (ab: P < 0.05; cd: P < 0.01;  836 
ef: P < 0.001; gh: P < 0.0001; ij: P ≤ 0.10). Comparisons between RPs, weaning management and RC interactions in each row for each parameter are declared at *P < 0.05, **P < 0.01, ***P < 0.001, 837 
****P < .0001, P ≤ 0.10. NS: Not significant. 838 
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Table 2  839 
Cumulative calculated methane (CH4) emissions (kg head 

-1
) and derived environmental indices from cows and calves grazed on neotropical savannas managed 840 

under conventional weaning (CW) or early weaning (EW) routines. 841 
 842 

 Replicate 1  Replicate 2  Effects 

 CW EW  CW EW  RP Weaning RC x Weaning  RC x Weaning x RP  

Cows  9 10  13 16      

First RC           

Gestation  36.35 ± 0.863d 38.02 ± 0.819i  37.78 ± 0.718a 37.38 ± 0.647a  NS NS ** NS 

Lactation   38.14 ± 0.929b  21.22 ± 0.881g   33.86 ± 0.773g  13.76 ± 0.697c  **** **** **** **** 

Calves suckling phase  12.72 ± 0.393j 4.99 ± 0.373g  10.03 ± 0.327h 1.95 ± 0.295i  **** **** **** **** 

CH4 intensity (kg kg 
–1

 calf born) 0.50 ± 0.012a 0.20 ± 0.011g  0.40 ± 0.010h 0.08 ± 0.009c  **** **** **** **** 

CH4 efficiency (kg CO2-eq kg 
–1

 FLW) 3.02 ± 0.064i 1.52 ± 0.060g  2.47 ± 0.053h 0.97 ± 0.048g  **** **** **** **** 

CH4 efficiency (kg CO2-eq kg 
–1

 calf born) 17.24 ± 0.410a 7.12 ± 0.389g  13.80 ± 0.341g 3.04 ± 0.308c  **** **** **** **** 

Weaning-conception period 12.91 ± 3.036 11.27 ± 3.036  13.67 ± 2.526 9.48 ± 2.434      

Cows 9 9  13 14      

Second RC           

Gestation 38.70 ± 0.863c 36.65 ± 0.847j  38.60 ± 0.718a 37.81 ± 0.676a      

Lactation
†
   41.07 ± 0.929a 11.51 ± 0.930h  41.61 ± 0.773h 11.12 ± 0.746d      

Calves suckling phase
†
 13.58 ± 0.393i 1.46 ± 0.392h  13.34 ± 0.327g 1.28 ± 0.314j      

CH4 intensity (kg kg 
–1

 calf born)
 †
 0.51 ± 0.012a 0.05 ± 0.012h  0.50 ± 0.010g 0.05 ± 0.009d      

CH4 efficiency (kg CO2-eq kg 
–1

 FLW)
†
 2.86 ± 0.064j 0.69 ± 0.064h  2.81 ± 0.053g 0.56 ± 0.051h      

CH4 efficiency (kg CO2-eq kg 
–1

 calf born)
†
 17.54 ± 0.410a 1.92 ± 0.411h  17.25 ± 0.341h 1.76 ± 0.330d      

 843 
† Modelled data. CO2-eq: Carbon dioxide equivalent. FLW: Final liveweight over the phase. RC: Reproductive cycle. RP: Replicate. Values between similar parameters bearing different letters in 844 
 the same column and RP are significantly different (ab: P < 0.05; cd: P < 0.01; ef: P < 0.001; gh: P < .0001; ij: P ≤ 0.10). Comparisons between RPs, weaning management and RC interactions in  845 
each row for each parameter are declared at *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, P ≤ 0.10. NS: significant. 846 

Tables
Click here to download Tables: CARR-RRV-IMR_Table 2.docx

http://ees.elsevier.com/agee/download.aspx?id=723815&guid=6e6a47a7-5a9b-45cf-a550-3e3c6f4da559&scheme=1


Table 3  847 
Calculated methane (CH4) emissions and derived environmental indices from commercial Brahman (Bos indicus) and Brahman crossbred cattle grazed on 848 
neotropical savannas subject to conventional weaning (CW) or early weaning (EW) farming systems. 849 

 850 

 Replicate 1  Replicate 2  Effects 

 CW EW  CW EW  RP Weaning RC x Weaning  RC x Weaning x RP  

Cow-calf pairs first RC 9 10  13 16      

CH4 (g day 
–1

) 146.0 ± 2.99i 142.4 ± 2.83g  148.0 ± 2.49a 134.6 ± 2.24a  NS **** **** ** 

CH4 (g/ha 
–1

 day 
–1

) 29.2 ± 0.59i 28.4 ± 0.56g  29.6 ± 0.49a 26.9 ± 0.44a  NS **** **** ** 

CH4 (g AU 
–1

 day 
–1

) 259.5 ± 1.29g 247.5 ± 1.22g  255.8 ± 1.07g 245.5 ± 0.96g  NS **** ** NS 

CH4 (g AU 
–1

 ha 
–1

 day 
–1

) 51.9 ± 0.25g 49.5 ± 0.24g  51.1 ± 0.21g 49.1 ± 0.19g  NS **** ** NS 

CH4 intensity (kg kg 
–1 calf born) 3.51 ± 0.115f 2.70 ± 0.109a  3.31 ± 0.096h 2.42 ± 0.089a  NS **** **** NS 

CH4 intensity (kg kg 
–1

 calf weaned) 0.62 ± 0.033a 0.58 ± 0.032h  0.58 ± 0.028b 0.78 ± 0.025a  NS **** .08 **** 

CH4 efficiency (kg CO2-eq kg 
–1 calf born) 119.40 ± 3.927f 91.83 ± 3.726a  112.83 ± 3.268h 82.41 ± 3.044a  NS **** **** NS 

CH4 efficiency (kg CO2-eq kg 
–1 calf weaned) 21.32 ± 1.152a 19.76 ± 1.093h  19.74 ± 0.095b 26.81 ± 0.864a  NS **** .08 **** 

Cow-calf pairs second RC
†
 9 9  13 14      

CH4 (g day 
–1

) 149.8 ± 2.99j 128.8 ± 2.91h  149.2 ± 2.49a 132.2 ± 2.31a      

CH4 (g/ha 
–1

 day 
–1

) 29.9 ± 0.59j 25.7 ± 0.58h  29.8 ± 0.49a 26.4 ± 0.46a      

CH4 (g AU 
–1

 day 
–1

) 238.1± 1.29h 221.6 ± 1.28h  236.9 ± 1.07h 222.3 ± 1.02h      

CH4 (g AU 
–1

 ha 
–1

 day 
–1

) 47.6 ± 0.25h 44.3 ± 0.25h  47.3 ± 0.21h 44.4 ± 0.20h      

CH4 intensity (kg kg 
–1

 calf born) 4.04 ± 0.115e 2.37 ± 0.115b  4.08 ± 0.096g 2.41 ± 0.092a      

CH4 intensity (kg kg 
–1

 calf weaned) 0.66 ± 0.033a 0.85 ± 0.033g  0.66 ± 0.028a 0.78 ± 0.027a      

CH4 efficiency (kg CO2-eq kg 
–1

 calf born) 137.52 ± 3.927e 80.62 ± 3.931b  139.00 ± 3.268g 81.95 ± 3.152a      

CH4 efficiency (kg CO2-eq kg 
–1

 calf weaned) 22.46 ± 1.152a 29.04 ± 1.153g  22.72 ± 0.095a 26.56 ± 0.925a      

 851 
† Includes postweaning-conception data. AU: animal unit. CO2-eq: Carbon dioxide equivalent. FLW: Final liveweight over the phase. RC: Reproductive cycle. RP: Replicate. 852 
Values between similar parameters bearing different letters in the same column and RP are significantly different (ab: P < 0.05; cd: P < 0.01; ef: P < 0.001; gh: P < 0.0001; ij: P ≤ 0.10).  853 
Comparisons between RPs, weaning management and RC interactions in each row for each parameter are declared at *P < 0.05, **P < .01, ***P < 0.001, ****P < 0.0001, P ≤ 0.10. 854 
 NS: Not significant. 855 
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Table 4  856 
Comparable modelled period of methane (CH4) emissions and resulting environmental indices from beef calves subject to conventional weaning (CW) on 857 
savanna or early weaning (EW) on savanna plus grazing on improved pastures until commercial CW age is achieved. 858 

 859 

 Replicate 1  Replicate 2  Effects 

 CW EW  CW EW  RP Weaning RC x Weaning  RC x Weaning x RP  

First RC 9 10  13 16      

CH4 (g day 
–1

) 56.1 ± 1.50a 57.1 ± 1.43g  54.2 ± 1.25a 44.7 ± 1.16h  ** **** * **** 

CH4 (g ha 
–1

 day 
–1

) 11.2 ± 4.82a 343.0 ± 4.57g  10.8 ± 4.01a 268.5 ± 3.73g  **** **** ** **** 

CH4 (g AU 
–1

 day 
–1

) 233.0 ± 3.59g 208.8 ± 3.41f  259.5 ± 2.99g 231.8 ± 2.79g  **** ** **** **** 

CH4 (g AU 
–1

 day 
–1

 ha 
–1

) 46.6 ± 0.72g 41.7 ± 0.68f  51.9 ± 0.59g 46.3 ± 0.55g  **** ** **** **** 

CH4 intensity (kg kg 
–1

 calf born) 0.32 ± 0.005h 0.35 ± 0.005h  0.32 ± 0.004h 0.30 ± 0.004h  NS **** **** **** 

CH4 intensity (g kg 
–1

 FLW) 57.2 ± 0.95h 67.0 ± 0.90h  57.3 ± 0.79h 68.9 ± 0.73h  NS **** **** * 

CH4 efficiency (kg CO2-eq kg 
–1

 calf born) 11.14 ± 0.198h 11.90 ± 0.188h  10.88 ± 0.16h5 10.23 ± 0.154h  NS **** **** **** 

CH4 efficiency (kg CO2-eq kg 
–1

 calf FLW) 1.96 ± 0.032h 2.27 ± 0.030h  1.95 ± 0.026h 2.34 ± 0.025h  NS **** **** * 

Second RC 9 9  13 14      

CH4 (g day 
–1

) 55.2 ± 1.50a 46.8 ± 1.49h  54.8 ± 1.25 48.5 ± 1.19g      

CH4 (g ha 
–1

 day 
–1

) 11.0 ± 4.82a 279 ± 4.82h  10.9 ± 4.01a 291.9 ± 3.86h      

CH4 (g AU 
–1

 day 
–1

) 202.3 ± 3.59h 226.9 ± 3.60e  213.9 ± 2.99h 213.9 ± 2.89h      

CH4 (g AU 
–1

 day 
–1

 ha 
–1

) 40.4 ± 0.72h 45.3 ± 0.72e  42.7 ± 0.59h 42.7 ± 0.57h       

CH4 intensity (kg kg 
–1

 calf born) 0.47 ± 0.005g 0.41 ± 0.005g  0.48 ± 0.004g 0.45 ± 0.004g      

CH4 intensity (g kg 
–1

 FLW) 77.3 ± 0.95g 102.8 ± 0.95g  79.1 ± 0.79g 100.3 ± 0.76g      

CH4 efficiency (kg CO2-eq kg 
–1

 calf born) 16.11 ± 0.198g 13.93 ± 0.199g  16.46 ± 0.165g 15.49 ± 0.159g      

CH4 efficiency (kg CO2-eq kg 
–1

 calf FLW) 2.62 ± 0.032g 3.49 ± 0.032g  2.69 ± 0.026g 3.40 ± 0.025g      

 860 
AU: animal unit. CO2-eq: Carbon dioxide equivalent. FLW: Final liveweight. RC: Reproductive cycle. RP: Replicate. Values between similar parameters bearing different letters in the same column 861 
and RP are significantly different (ab: P < 0.05; cd: P < 0.01; ef: P < 0.001; gh: P < 0.0001; ij: P ≤ 0.10). Comparisons between RPs, weaning management and RC interactions in each row for each 862 
parameter are declared at *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, P ≤ 0.10. NS: Not significant. 863 
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Table 5  864 
Calculated methane (CH4) emissions and derived environmental indices from commercial beef yearlings up to 25 months of age grazed on savannas after 865 
conventional weaning (CW) or early weaning (EW) farming systems. 866 

 867 

 Replicate 1  Replicate 2  Effects 

 CW EW  CW EW  RP Weaning RC x Weaning  RC x Weaning x RP  

First RC 9 10  13 16      

CH4 (g day
 –1

) 72.7 ± 1.61f 74.7 ± 1.53g  71.5 ± 1.34h 64.7 ± 1.24f  .08 **** **** **** 

CH4 (g ha 
–1

 day
 –1

) 18.1 ± 0.40f 18.6 ± 0.38g  17.8 ± 0.33h 16.1 ± 0.31f  .08 **** **** **** 

CH4 (g AU
 –1

 day
 –1

) 186.9 ± 1.20c 185.0 ± 1.14f  187.6 ± 1.00g 193.5 ± 0.93g  * **** *** **** 

CH4 (g/AU/ha day
 –1

) 37.3 ± 0.24c 37.0 ± 0.22f  37.5 ± 0.20g 38.7 ± 0.18g  * **** *** **** 

CH4 intensity (kg kg
 –1

 calf born) 1.20 ± 0.012j 1.29 ± 0.111g  1.19 ± 0.010d 1.21 ± 0.009e  NS ** **** **** 

CH4 intensity (g kg
 –1

 FLW) 136.3 ± 0.05c 137.9 ± 0.05h  136.3 ± 0.04e 136.3 ± 0.04c  **** **** **** **** 

CH4 efficiency (kg CO2-eq kg
 –1

 calf born) 35.9 ± 0.398h 44.1 ± 0.377g  40.7 ± 0.331d 41.4 ± 0.308e  **** NS **** **** 

CH4 efficiency (kg CO2-eq kg
 –1

 calf FLW) 4.63 ± 0.001c 4.68 ± 0.001h  4.63 ± 0.001e 4.63 ± 0.001c  **** **** **** **** 

Second RC 9 9  13 14      

CH4 (g day
 –1

) 78.7 ± 1.61e 67.4 ± 1.60h  78.5 ± 1.34g 69.8 ± 1.28e       

CH4 (g ha 
–1

 day
 –1

) 19.6 ± 0.40e 16.8 ± 0.40h  19.6 ± 0.33g 17.4 ± 0.32e      

CH4 (g AU
 –1

 day
 –1

) 182.2 ± 1.20d 190.2 ± 1.20e  182.4 ± 1.00h 188.8 ± 0.96h      

CH4 (g/AU/ha day
 –1

) 36.4 ± 0.24d 38.0 ± 0.24e  36.4 ± 0.20h 37.7 ± 0.19h      

CH4 intensity (kg kg
 –1

 calf born) 1.23 ± 0.012i 1.08 ± 0.012h  1.23 ± 0.010c 1.17 ± 0.009f      

CH4 intensity (g kg
 –1

 FLW) 136.1 ± 0.05d 138.2 ± 0.05g  136.1 ± 0.04f 136.2 ± 0.04d      

CH4 efficiency (kg CO2-eq kg
 –1

 calf born) 42.1 ± 0.398g 36.8 ± 0.398h  42.1 ± 0.331c 39.8 ± 0.319f      

CH4 efficiency (kg CO2-eq kg
 –1

 calf FLW) 4.62 ± 0.001d 4.70 ± 0.001g  4.62 ± 0.001f 4.62 ± 0.001d      

 868 
AU: animal unit. CO2-eq: Carbon dioxide equivalent. FLW: Final liveweight. RC: Reproductive cycle. RP: Replicate. Values between similar parameters bearing different letters in the same column 869 
and RP are significantly different (ab: P < 0.05; cd: P < 0.01; ef: P < 0.001; gh: P < 0.0001; ij: P ≤ 0.10). Comparisons between RPs, weaning management and RC interactions in each row for each 870 
parameter are declared at *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, P ≤ 0.10. NS: Not significant. 871 
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Table 6  872 
Estimated carbon (C) footprint from greenhouse gas (GHG) fluxes, and animal performance for fertile beef cows with suckling calves subjected to conventional 873 
weaning (CW) and early weaning (EW) systems while grazing a savanna that was moderately managed with fire (applied to different fractions of the paddock), one or 874 
two times per year. Data in parentheses represent observed range of values. 875 

 876 

   Parameters CW EW Observations and source of referenced data 

    

Animal performance and methane (CH4) emissions    

Average annual liveweight (LW; kg cow 
-1

) 350 (280-380) 340 (300-380) Present study-results; LWs oscillate with 

reproductive state 

Stocking rate (SR; cows ha 
–1

) 0.20 0.20 Average on-ranch and on-station, on medium texture 

soils; SR on sandy soils ≤ 0.1 cows ha 
-1

 

LW gain (LWG; kg day
 –1

) 0 0 Net gain over the reproductive cycle (RC) 

CH4 emitted by cow-calf pair (kg cow 
–1

 day 
–1

) 0.127 0.126 Present study-results 

CH4 emitted by cow-calf pair (kg ha 
–1

 year 
–1

) 9.256 9.191  

Carbon dioxide equivalent (CO2-eq) factor for CH4 34 34 Myhre et al. (2013); Mueller and Mueller (2017) 

CO2-eq of CH4 by cow-calf pair (kg ha 
–1

 year 
–1

) 315 312  

CO2-eq of CH4 by cow-calf pair over RC period (kg) 4,624 3,448  

CH4 emitted by bull (kg ha 
–1

 year 
–1

) 0.287 0.287  

CO2-eq of CH4 by bull (kg ha 
–1

 year 
–1

) 9.750 7.750  

CO2-eq of CH4 by bull over RC period (kg) 208 132  

C stocks and soil C accumulation from savanna    

Soil organic C to 1 m depth, medium texture soil (Mg ha 
–1

) (120-150) (120-150) Fisher et al. (1994); Rao (1998); Rao et al. (2001); 

Trujillo et al. (2006)   
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Table 6 Continued     

Parameters CW EW Observations and source of referenced data 

    

C stocks and emissions from savanna    

Standing aboveground (shoot) biomass (DM kg ha 
–1

) 2,000-6,000 2,000-6,000 Fisher et al. (1998); Rao (1998); Rao et al. (2001); 

Grace et al. (2006) 

Standing root biomass (DM kg ha 
–1

) 1,500-3,000 1,500-3,000 Rao (1998); Rao et al. (2001); Trujillo et al. (2006) 

Total C stock in shoot and root biomass (kg ha 
–1

) 3,500-9,000 3,500-9,000   

Soil C accumulation rate (kg ha 
–1

 year 
–1

) 150 (100-200) 150 (100-200) Fisher et al. (1994); Rao (1998); Rao et al. (2001); 

Trujillo et al. (2006)  

GHG emissions from animals and C in soil in CO2-eq    

Enteric CH4 from cow-calf + bull (kg ha 
–1

 year 
–1

) 331 327 Present study-results 

Fecal CH4 from cow-calf + bull (kg ha 
–1

 year 
–1

) 242 242 Present study-results; emission factors (Zhu et al., 

2018) 

Total CH4 from enteric + fecal (kg ha 
–1

 year 
–1

) 573 569  

Nitrous oxide (N2O) emission from dung of cow-calf + bull (kg ha 
-1

 year 
-1

) 0.471 0.471  

N2O emission from urine of cow-calf + bull (kg ha 
-1

 year 
-1

) 11.71 11.71  

CH4 emission from soil (kg ha 
–1

 year 
–1

) 25.7 25.7 Castaldi et al. (2006) 

N2O emission from soil (kg ha 
–1

 year 
–1

) 518 518 Castaldi et al. (2006) 

Soil C accumulation in CO2-eq (kg ha 
–1

 year 
–1

) -550 -550  

Overall estimated C footprint at system level in CO2-eq (kg ha 
-1

 year 
-1

) 583 579  

 877 
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Figure Headings  878 

 879 

Fig. 1. Meta Department in Colombia extending from the east Andean mountains to the 880 

neotropical savanna regions of Puerto López, Puerto Gaitán y Carimagua Research Centre in 881 

the east. In the reference box, dark green shows the Meta (running west to east) and 882 

Manacacías (flowing south to north) rivers; light green corresponds to the high savannas 883 

where cropping activities are expanding; lighter colors refer to the dissected savannas. North 884 

of the Meta river (Casanare Department) is covered by seasonally flooded savannas. 885 

Numbers and dots indicate different land classes and the location of previously surveyed 886 

ranches, respectively, including some in which long-term monitoring of savannas, sown 887 

pastures and soils were carried out [Adapted from Cochrane et al. (1985); “All things 888 

Nittany” (2018); Instituto Geográfico Agustín Codazzi-Geoportal (IGAC, 2018)]. 889 

Fig. 2. Farming system boundary, inputs and outputs for and from conventional weaning 890 

(CW; 270 days of age) and early weaning (EW; 90 days of age) practices. The EW calves are 891 

moved to a sown pasture until reaching CW age. At that point, stockers in each weaning 892 

system are either sold or kept on fam as stockers-yearlings until 25 months of age to be sold 893 

for fattening purposes. Carbon footprint of both systems is estimated in terms of cattle 894 

methane (CH4) emissions and carbon dioxide (CO2) equivalents of CH4 emissions. 895 

Fig. 3. Cows’ mean liveweights at successive reproductive events (a) and time to reach them 896 

(b) during conventional (●) and early (▼) weaning farming systems in replicate 1; and over 897 

conventional (●) and early (∆) weaning practices in replicate 2. Con, Calv, Preg, Lac, Wean 898 

and Dry represent conception, calving, pregnancy, lactation, weaning and weaning to 899 

reconception events or periods.  900 
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 901 

Fig. 1. 902 
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 902 

Fig. 2.  903 
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Fig. 3. 906 
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