

The Role of Crossbreed Cow Adoption on Farm Productivity and Technical Efficiency in Ethiopia. Tropentag 2018, Ghent, Belgium

Zewdie Adane Mariami¹, Ernst-August Nuppenau¹, Berhanu Gebremedhin² and Azage Tegegne² ¹Justus-Liebig University Giessen (Germany), ²IILRI-LIVES (Ethiopia)

Introduction

- Crossbreeding and promoting adoptions became the foci of Ethiopia's livestock development initiatives since the 1970s
 - ✓ Aim: raising milk production and hence farmers' incomes
- > However, the effect of crossbreed cow adoption on the farmers' milk production performance remained unclear
 - ✓ Inadequacy of single-technology frontier methods in comparing the relative performances of decision makers which use heterogeneous technology
 - ✓ Such heterogeneity calls for a differentiated picture of potentials

Methods and Materials

Figure 5: Parametric Meta-frontier production function framework (sketch based on Huang et al., 2014)

- Figure 4: Milk Production Efficiency Synthesis
- framework (Mareth et al., 2017)
- Data: cross-sectional data (2016)
- Sampling: stratified random sample
- ✤ Sample size: 250 farmers

Results and Discussion

Table 1: Summary of mean group technical efficiencies, meta-technology ratios and meta-technology efficiencies

		Meta Technology			
		Ratio		Meta-technology Efficiency	
					Fully
	Group			Semi-Parametric	Parametric
Farmer	TE			(O'Donnell et al.,	(Huang et al.,
class	(SFA)	DEA	SFA	2008)	2014)
Indigenous only	0.81	0.74	0.56	0.61	0.46
Crossbred only	0.91	0.84	0.79	0.76	0.72
Mixed case	0.78	0.84	0.70	0.65	0.54
					•

Figure 6: Study area

Figures 1,2,3: Pictures taken during fieldwork in central Ethiopia (2016)

Method of Analysis

- Meta-frontier production function method applied: Semi-parametric and Fully-parametric
 - Farmers keeping only crossbreed cows have superior milk production frontier followed by those keeping both cow types
- > Farmers keeping only crossbred cows exhibit consistently highest mean Metatechnology TE
- Lower mean meta-technology TE results under the fully-parametric method
- Result from fully-parametric method is preferred for policy as it reduces the obvious measurement issues in LDC's data

by cow type

Conclusions

> Farmers' actual per cow milk yield in relation to potential yield varies according to differences in the genetics of the cows kept by the farmers

✓ The use of crossbred cows enhances milk productivity as well as technical efficiency levels

- ✓ Enhanced motivation for maximization when the stakes are higher as compared to the case of low value investments for mere subsistence
- ✓ The evidence supports the arguments favoring promotion of the adoption of crossbred cows in order to improve milk productivity and technical efficiency

References Acknowledgement 1. Battese, G. E., & Coelli, T. J. (1995). A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data. Empirical Economics, 20, 325–332. 2. Erkoc, T. (2012). Estimation Methodology of Economic Efficiency: Stochastic Frontier Analysis vs Data Envelopment Analysis. International Journal of Academic Research in Economics and Management Sciences, 1(1), 1-23. 3. Huang, C. J., Huang, T.-H., & Liu, N.-H. (2014). A new approach to estimating the metafrontier production function based on a stochastic frontier framework. Journal of Productivity Analysis, 42(3), 241-254. 4. O'Donnell, C. J., Rao, D. S. P., & Battese, G. E. (2008). Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical Economics, 34(2), 231-255. 5. Shapiro, B. I., Gebru, G., Desta, S., Negasa, A., Nigussie, K., Aboset, G., & Mechal, H. (2015). Ethiopia livestock master plan Roadmaps for growth and transformation. Ethiopia livestock master plan. ILRI Project Report, Nairobi, Kenva: International Livestock Research Institute (ILRI)