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Abstract  

Lack of accurate information about soil nutrient requirements coupled with limited access to 

appropriate fertilizers could lead to mismatch between soil nutrient requirements and fertilizer 

applications. Such anomalies and mismatches are likely to have important implications for 

agricultural productivity. In this paper we use experimental (spectral soil analysis) data from 

Ethiopia to examine farmers’ response to soil nutrient deficiencies and its implications for yield 

responses. We find that farmers’ response to macronutrient (nitrogen and phosphorus) deficiencies 

is not always consistent with agronomic recommendations. For instance, we find that farmers in 

our sample are applying nitrogen fertilizers to soils lacking phosphorus, potentially due to lack of 

information on soil nutrient deficiencies or lack of access to appropriate fertilizers in rural markets. 

On the   other hand, farmers respond to perceivably poor-quality soils and acidic soils by applying 

higher amount of nitrogen and phosphorus fertilizers per unit of land. We further show that such 

mismatches between fertilizer applications and soil macronutrient requirements are potentially 

yield-reducing. Those farmers matching their soil nutrient requirements and fertilizer application 

are likely to enjoy additional yield gains and the vice versa. Marginal yield responses associated 

with nitrogen (phosphorus) application increases with soil nitrogen (phosphorus) deficiency. 

Similarly, we find that farmers’ response to acidic soils is not yield-enhancing. These findings 

suggest that such mismatches may explain heterogeneities in marginal returns to chemical 

fertilizers and the observed low adoption rates of chemical fertilizers in sub-Saharan Africa.  As 

such, these findings have important implications for improving input management practices and 

fertilizer diffusion strategies. 

  

Keywords: Mismatch, nutrient deficiency, fertilizer applications, spectral soil analysis, Ethiopia. 
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1. Introduction  

It is widely believed that agricultural productivity growth in Africa, among others, requires higher 

application of improved inputs (Evenson and Gollin, 2003; Johnson et al., 2003). This argument 

is built on the presumption that increased use of improved agricultural inputs, including chemical 

fertilizers and improved seeds can be profitable in African agriculture when applied in appropriate 

mixes. However, fertilizer adoption rates and intensity in many sub-Saharan African (SSA) 

countries still remain low, especially given ongoing efforts to increase agricultural yield in SSA 

(Minot and Benson, 2009; Amare et al., 2012; Rashid et al., 2013; Abay et al, 2017; Sheahan and 

Barrett, 2017; Binswanger-Mkhize and Savastano, 2017). Furthermore, the uptake of modern 

technologies in African agriculture is not uniformly low across countries, households and plots. 

Recent studies document substantial heterogeneities among countries and households (Sheahan 

and Barrett, 2017; Binswanger-Mkhize and Savastano, 2017; Abay et al., 2018; Kurdi et al., 2020; 

Abate et al., 2020).  

There are several strands of economic and agronomic literature that attempt to explain these 

low and heterogeneous technology adoption rates in sub-Saharan Africa. One strand of economics 

literature acknowledges the role of market imperfections and frictions related to the distribution 

and access to these technologies (e.g., Moser and Barrett, 2006; Giné and Yang, 2009; Duflo et 

al., 2008; Davis et al., 2010; Spielman et al., 2010; Minten et al., 2013; Benson et al., 2020). 

Another strand of economics literature revisits the profitability of these modern agricultural inputs 

in African agriculture. Several studies show that marginal returns to inorganic fertilizers can be 

low and heterogenous across contexts (Duflo et al., 2008; Xu et al., 2009; Marenya and Barrett, 

2009; Suri, 2011; Minten et al., 2013; Sheahan et al., 2013; Burke et al., 2017; Harou et al., 2017; 

Liverpool-Tasie et al., 2017).1 For instance, some studies show that the profitability of chemical 

fertilizers and improved seeds depend on soil quality and soil characteristics (Marenya and Barrett, 

2009; Amare et al., 2012; Burke et al., 2017).  

An important underlying assumption in these discussions is that to the extent that soil 

quality is known to farmers, removing informational and access constraints can lead to better use 

of improved inputs and hence productivity increases. However, farmers lack accurate information 

 
1Some studies argue that technology adoption decisions of rural farmers in Africa are consistent with their comparative 
advantage and expected profitability of these technologies (e.g., Sheahan et al., 2013; Suri, 2011; Liverpool-Tasie, 
2017).  



2 

about their soil quality and its nutrient requirements. For example, Gourlay et al. (2017) show that 

farmers’ subjective assessment of soil quality is only weakly correlated with objective measures 

of soil quality. This is not surprising given that conventional soil tests are usually expensive and 

inaccessible to smallholders in most of Africa. Lack of access to objectively measured soil 

information along with appropriate fertilizer recommendations imply that farmers are left to 

guessing when applying fertilizers, which could lead to mismatch between soil nutrient 

requirements and fertilizer applications. In the absence of objective measures of soil properties 

and associated nutrient requirements, farmers are forced to form some perceptions about their soil 

qualities or use some inaccurate soil quality proxies.2 For instance, Berazneva et al. (2018) show 

that farmers’ perception of soil quality and type is driven by actual crop yield. These 

misperceptions or proxies may lead to sub-optimal application of modern agricultural inputs.3  

 In this paper we explore another empirical pattern, mismatch between soil nutrient 

requirements and actual fertilizer applications, for explaining the low and heterogenous returns to 

chemical fertilizers in SSA. We hypothesize that farmers lack accurate information about their soil 

nutrient requirements, and hence may not appropriately respond to recommended agronomic 

nutrient requirements, which may lead to lower fertilizer yield responses. A long-existed 

agronomic literature shows that yield responses to fertilizers heavily depend on soil nutrient 

requirements and farmers’ response to these nutrient requirements (Tittonell et al., 2008; Kihara 

et al., 2016).  Furthermore, soil nutrient requirements significantly vary across plots and across 

communities in many African countries, proving farmers’ learning about nutrient use from 

experience difficult (Otsuka and Larson, 2013; Tjernstrom et al., 2018). As such, these spatial 

variabilities in soil nutrient requirements render the usual blanket fertilizer recommendations 

ineffective and less relevant to many farmers (e.g., Harou et al., 2018).  

Our study makes two important contributions to the literature on fertilizer applications and 

yield responses. First, we examine farmers’ response (in terms of chemical fertilizer use) to soil 

fertility as measured by both objective and subjective metrics of soil properties. In Ethiopia, DAP 

(Diammonium phosphate) and urea are the two dominant chemical fertilizers that are meant to 

 
2 Learning from these imprecise proxies and experiments may discourage (risk-averse) farmers adopt yield-
enhancing technologies and inputs. 
3 For instance, Abay et al. (2021) show that misperceptions associated with land area measurement drive input 
allocations, while Wossen et al. (2021) show similar response driven by misperceptions associated with crop variety.  
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address macronutrient deficiencies. We thus focus on examining farmers’ response in terms of 

actual application of these chemical fertilizers. Second, we explicitly study the implication of these 

responses to soil fertility on agricultural yield. We investigate whether farmers’ response to soil 

fertility and nutrient requirements are yield-enhancing. We use data that come from a large-scale 

methodological experiment involving spectral soil analysis of plot-level soil samples implemented 

as part of the Living Standards Measurement Survey-Integrated Surveys on Agriculture (LSMS-

ISA) by the World Bank. These spectral soil analysis data provide objective plot-level measures 

of soil properties, which allow us examine farmers’ response to soil (macro) nutrient requirements 

and associated yield implications. These data provide large set of information on soil health and 

soil quality, including availability of macronutrients (nitrogen and phosphorus) in soil samples.  

Using these objectively measured soil nutrient content and self-reported input use decisions 

of farmers, we estimate both input demand and yield response elasticities. We find that farmers’ 

fertilizer applications are not always consistent with (objectively measured) levels of soil 

macronutrients, but instead appear to be consistent with perceived soil quality indicators. 

Particularly, we find that nitrogen fertilizer application rates are not statistically associated with 

measured nitrogen nutrient levels in soils. However, the results show that phosphorus fertilizer 

applications are consistent with measured phosphorus nutrient requirements in soils. For instance, 

one percent reduction in soil phosphorus content is associated with about 0.3 percent increase in 

phosphorus application. Contrary to this, although input demand functions suggest farmers 

respond to low measured phosphorus nutrient levels, in doing so, they also respond by applying 

more nitrogen fertilizer levels. These responses may be driven by lack of access to appropriate 

fertilizer mixes as well as farmers’ limited knowledge of soil nutrient requirements. For instance, 

in the context of Ethiopia DAP (Diammonium phosphate) fertilizer, which contains both 

phosphorus and nitrogen, is relatively more accessible than urea, which mainly contains nitrogen. 

On the other hand, farmers respond to perceived poor-quality soils and acidic soils by applying 

higher levels of nitrogen and phosphorus fertilizers. We further show that such mismatch between 

fertilizer applications and macronutrients requirements is yield-reducing. Those farmers 

mismatching their soil nutrient requirements and fertilizer application rates lose significant yield 

responses. Similarly, farmers’ response to acidic soils is not productivity-enhancing, rather 

adversely affects marginal yield responses associated with chemical fertilizers. 
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The evidence we document in this paper can help improve our understanding of the 

relationship between objective and subjective measures of soil fertility and their implications for 

fertilizer use and yields, contributing to the literature in at least two important ways. First, our 

findings add nuanced evidence to the literature explaining the low level of fertilizer adoption and 

associated low marginal returns to fertilizers in SSA. The mismatch between measured soil 

nutrient levels and farmers’ fertilizer application documented in our analysis can be one important 

explanation why yield responses and marginal returns to fertilizers in these contexts can be low. 

Second, our findings also reinforce existing evidence on the extent to which availing plot-specific 

soil nutrient information can be important to improve farm management practices and yield 

(Fishman et al., 2016; Fabregas et al., 2019; Harou et al., 2018; Tjernström et al., 2018; Murphy 

et al., 2020; Ayalew et al., 2020).  

The rest of this paper is organized as follows. Section 2 reviews the literature on the 

interaction among soil properties, fertilizer applications and associated marginal yield responses. 

Section 3 describes the data and sampling design. Section 4 outlines our empirical approach while 

Section 5 presents the main results. Section 6 concludes. 

 

2. Soil Properties, Yield Responses and Marginal Returns to Fertilizers 

African agriculture faces a twin challenge of satisfying increased food demands of the ever-

growing population and judicious use of soils to ensure sustainable increase in productivity 

(Collier and Dercon, 2014; Gollin et al., 2014; Amare et al., 2017). Currently, the low level of 

agricultural productivity in many SSA countries do not meet the growing demand for food from 

the growing population and urbanization, often pushing food prices upwards (e.g., Swinnen et al., 

2015; Christiaensen and Demery, 2017; Barrett et al., 2020). Such low agricultural productivity in 

the region is often attributed to lack of innovation and low adoption of improved agricultural 

technologies, including chemical fertilizers (Sheahan and Barrett, 2017; Amare et al., 2017; 

Binswanger-Mkhize and Savastano, 2017).This is despite several efforts and investments to 

increase technology adoption and agricultural yields (Minot and Benson, 2009; Amare et al., 2012; 

Rashid et al., 2013; Binswanger-Mkhize and Savastano, 2017; Abay et al., 2018; Abate et al., 

2020). The low adoption of agricultural technologies in many SSA countries also contradicts with 

the long-held view that chemical fertilizers are profitable in African agriculture and farmers should 
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apply them in appropriate mix (e.g., Conley and Udry, 2010; Duflo et al., 2011; Liverpool-Tasie, 

2017; Liverpool-Tasie et al., 2017; Jayne et al., 2018).   

Other studies show that fertilizer usage in Africa has grown during the last two decades 

and is not as low as conventional wisdom suggests (e.g., Marenya and Barrett, 2009; Peñuelas et 

al., 2013; Van Der Velde et al., 2014; Liverpool-Tasie et al., 2015; Liverpool-Tasie et al., 2017; 

Sheahan and Barrett, 2017). However, there exist substantial heterogeneities among countries, 

households, and plots (e.g., Sheahan and Barrett, 2017; Binswanger-Mkhize and Savastano, 2017; 

Abay et al., 2018; Abate et al., 2020). Furthermore, whether such increases and heterogeneities in 

fertilizer applications are consistent with soil nutrient requirements remain unknown, mainly 

because objective measures of soil properties are not widely available. Most importantly, fertilizer 

management and application in several African countries are guided by blanket recommendations, 

which may not be relevant to several farmers and contexts (e.g., Harou et al., 2018). On the other 

hand, the substantial heterogeneities in soil nutrient requirement across farms and plots also 

impede learning from experiences of fertilizer applications based on blanket recommendations as 

different locations or plots respond differently to specific nutrient applications (e.g., Otsuka and 

Larson, 2013; Tjernstrom, 2017).  

One important explanation for the existing low and heterogenous fertilizer application rates 

in many SSA has been heterogeneity in returns to fertilizer applications (Duflo et al., 2008; 

Marenya and Barrett, 2009; Suri, 2011; Sheahan et al., 2013; Burke et al., 2017; Harou et al., 2017; 

Liverpool-Tasie et al., 2017). Heterogeneities in marginal returns to chemical fertilizers are 

particularly linked with variations in soil quality and soil characteristics (e.g., Marenya and Barrett, 

2009; Burke et al., 2017). For instance, Marenya and Barrett (2009) find that chemical fertilizers 

can be unprofitable in soils with low Soil Organic Content (SOC).4 Similarly, Burke et al. (2017) 

show that chemical fertilizers are unprofitable when applied on acidic soils. Furthermore, adding 

some type of fertilizers to acidic soils may reduce yield while also adversely affecting overall soil 

and environmental health.  

Marginal returns to fertilizer applications are also likely to vary across soils with varying 

macronutrient availability. For instance, agronomic studies show that marginal yield responses 

 
4 SOC is the core of soil fertility that ensures crop production and food security (Blanchet et al., 2016; Lützow et al., 
2006; Marenya and Barrett, 2009). Maintaining or enhancing SOC is important for improving soil quality and 
mitigating carbon dioxide (CO2) emissions. 
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heavily depend on soil nutrient requirements (e.g., Tittonell et al., 2008; Kihara et al., 2016). 

Similarly, some type of fertilizers can be more appropriate and impactful for some crops than 

others. For example, Van der Velde et al. (2013) show that the maize yield responses to phosphorus 

fertilizers are much higher than nitrogen fertilizer applications. 

Despite its importance, plot-level soil nutrient information remains to be invariably missing 

in Africa, leaving farmers to rely on their subjective assessments when applying fertilizers. 

However, recent studies indicate that farmers’ subjective assessments of soil properties are not 

strongly correlated with objective measures of soil quality (Gourlay et al., 2017). Gourlay et al. 

(2017) show that farmers’ subjective assessments of soil quality poorly explain objective 

laboratory results and lack intra-household variations, while objective measures show significant 

variations across plots and communities. This opens doors for potential mismatch between soil 

nutrient requirements and fertilizer applications, with important implications to yield responses 

associated with chemical fertilizers. In this paper, we examine to what extent farmers’ actual 

fertilizer applications relate to objectively measured soil nutrient levels and its implications for 

yield responses using objectively measured plot-level data on soil properties.  

3. Data and Sample Description 

3.1   Sample description and study area 
We use data collected by the World Bank and partners through the Living Standards Measurement 

Study-Integrated Surveys on Agriculture (LSMS-ISA) program and under the Land and Soil 

Experimental Research (LASER) project. The LASER experiment, which aimed at understanding 

and improving soil fertility measurements, was implemented in partnership with the World 

Agroforestry Center (ICRAF) and the Central Statistical Agency (CSA) of Ethiopia. The LASER 

project is a methodological experiment originally designed to evaluate the feasibility of integrating 

objective soil fertility measures into household socioeconomic data collection operations. The 

experiment also aims to assess local knowledge of farmers in assessing their soil quality. The 

national LSMS-ISA surveys commonly collect household socioeconomic information including 

subjective plot-level information on soil quality, often asked to the head of household or plot-

manager. Data collection for the LASER study was conducted in 3 zones (Borena, East Wellega, 
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and West Arsi) of the Oromia region in Ethiopia (see Figure 1).5  Oromia region was selected 

because it represents a large area of Ethiopia and encompasses areas with great variation in rainfall, 

elevation, and agroecological zones. The region is suitable and known for cultivating several cereal 

and cash crops. The most dominant cereals include maize, barley, wheat and teff. Macronutrients 

(nitrogen and phosphorus) deficiencies are one of the limiting factors for increasing productivity 

in Ethiopia and Oromia region, for which DAP and urea are widely recommended to address these 

deficiencies. In total, 85 enumeration areas (EAs) were randomly selected using the Central 

Statistical Agency of Ethiopia’s Agricultural Sample Survey (AgSS) as a sampling frame. Within 

each EA, 12 households were randomly selected from the AgSS household listing completed in 

September 2013.6 The field data collection was then conducted in multiple waves, which covered 

post-planting activities (September to December 2013) and post-harvest activities (January to 

March 2014).7  

Prior to the collection of physical soil samples, a series of subjective plot-level questions 

were administered to the best-informed household member or plot-manager for each plot. These 

questions ranged from categorically coded responses on soil quality of plots to questions on soil 

color, texture, and type. It is worth noting that the subjective questions were administered at the 

dwelling, not upon direct respondent observation of the soils, as the study aimed at assessing 

farmers’ knowledge of soil properties. Our analysis integrates these self-reported information with 

objectively measured plot-level soil nutrient information to understand how farmers respond (in 

terms of fertilizer applications) to various actual soil nutrient availabilities in these study areas. 

 

 
5 We note that smallholder agriculture in Ethiopia, including our study area, is predominantly rainfed. Agricultural 
production is thus limited to the main rainy season known as Meher ranges between June to September and a second 
rainy season covering some areas known as Belg spans from February to May. With limited access to water and 
irrigation structures, the rest of the year remains mostly dry in most part of Ethiopia, with no possibility to grow crops. 
6 Additional details about the sampling design are available at Gourlay et al. (2017). 
7 These household- and plot-level questionnaires were administered using computer-assisted personal (face-to-face) 

interviews. 
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Figure 1. Location of the study area: markers indicate fields where soil samples are collected from 

households in Borena, East Wellega, and West Arsi zones of the Oromia region, Ethiopia.  

 

3.2 Soil data collection and analyses 

The collection of soil samples was made considering the nature of crops planted in soils, seasons 

and the timing since last fertilizer applications. The timing of soil sampling can influence the nature 

of some transient soil properties while stable soil properties are less likely to be affected by the 

time of sample collection. For these reasons, the soil samples for the LASER project were collected 

during dry season, September to December 2013, depending on the nature of crops. Some crops, 

such as teff, can be damaged during soil sampling and hence this requires waiting until these crops 

are harvested. Allowing for some time lag between planting and soil sampling reduces the effects 

of recent fertilizer applications on some transient soil properties (e.g., nitrogen contents in soils).  

Soil samples were collected from up to two randomly selected plots per household. The in-

field sampling protocol was designed by ICRAF, adapting the Land Degradation Surveillance 

Framework of the African Soil Information Service (Shepherd et al., 2015). Two soil samples 

(topsoil and subsoil) from each selected plot were collected for laboratory test.8 Composite soil 

samples were collected from topsoil (0-20 cm depth) and subsoil (20-50 cm depth (Aynekulu et 

 
8 A thorough explanation of the soil collection, processing, and analysis protocols followed in the LASER study are 

found in Aynekulu et al. (2016).    
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al., 2016; Gourlay et al., 2017). Thereafter, the samples were air dried and sieved for laboratory 

analysis of soil properties, which were conducted at ICRAF laboratories. The LASER study 

produced objective soil property measures using spectral soil analysis technique on the soil 

samples taken from topsoil and subsoil.9 The suite of spectral analyses includes the following tests: 

mid-infrared diffuse reflectance spectroscopy (MIR), laser diffraction particle size distribution 

analysis (LDPSA), x-ray methods for soil mineralogy (XRD), and total element analysis 

(TXRF).10 Ultimately, approximately 50 variables were predicted for each top and subsoil sample, 

containing both chemical and physical soil properties (Aynekulu et al., 2016; Gourlay et al., 2017). 

The LASER dataset is the first large scale data of its kind that include pertinent household- and 

plot-level information along with subjective and objective information on soil quality and health. 

Overall, the LASER survey resulted in an unprecedented dataset encompassing a series of 

subjective indicators of soil quality obtained from the farmers’ assessment, as well as objective 

spectral soil analysis results on about 1677 plot-specific soil samples from 1,007 households. The 

main variables of interest from the spectral soil analysis include information on macronutrient 

(nitrogen and phosphorus) availability in soils and soil acidity (pH levels). As topsoil properties 

are likely to be better known (perceived) by farmers than subsoil soil properties, we mainly focus 

on topsoil properties (Gourlay et al., 2017). DAP and urea are the two dominant chemical fertilizers 

that are meant to address macronutrient deficiencies in Ethiopia. DAP fertilizers are mostly meant 

to supplement phosphate deficiencies while urea fertilizers mainly contain nitrogen. DAP contains 

18% nitrogen and 46% phosphate while urea contains 46% nitrogen. We convert farmers’ fertilizer 

applications into nitrogen and phosphorus equivalent per hectare using these ingredient 

compositions. Table 1 presents descriptive statistics of all the variables used in our estimation and 

analysis. Average yield in our sample amounts 1448 kilograms per hectare.11 Average fertilizer 

application rates are generally low, 7 kg/ha of nitrogen fertilizers and 9 kg/ha of phosphorus 

 
9 Conventional soil analysis (CSA), which includes traditional wet chemistry methods for soil nutrient extraction and 
some basic soil spectral analyses, were conducted on 10% of samples (n = 361). Conventional analysis, while often 
regarded as the gold standard in soil analysis, is expensive and destructive in nature. Spectral soil analysis (SSA), or 
soil infrared spectroscopy, the second set of tests conducted under the LASER study, is significantly less expensive 
and non-destructive, allowing for multiple tests over time (Shepherd and Walsh, 2007). 
10 MIR and LDPSA spectral tests were conducted on all top- and sub-soil samples, while the x-ray tests, XRD and 
TXRF, were conducted on the same 10% on which conventional testing was executed. Following the methods 
designed by Shepherd and Markus (2002) the results of the CSA were used to predict soil properties onto the full 
sample based on the spectral signatures. 
11 As expected, the average yield for cereal crops appears to be slightly higher.  
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fertilizers. We note these are the two dominant fertilizer types (sources of macro nutrients) in 

Ethiopia and in our sample.  

 In relation to the soil properties, the mean nitrogen content was 0.27 percent, and the mean 

phosphorus availability was 402 mg/kg. Macronutrients such as nitrogen and phosphorus are 

critical for plant development, and a higher quantity is usually needed, despite significant 

variations across crops. Compared to some existing nutrient sufficiency ranges, the average 

nitrogen nutrient availability in Table 1 is expected to be low, especially for cereal crops such as 

maize that require higher level of nitrogen nutrients (e.g., Naidu et al., 2006; Schulte and Kelling, 

2017).12 Based on these nutrient availability indicators we generate some indicators of relative soil 

nutrient (nitrogen and phosphorus) deficiencies. We generate indicators of relative nutrient 

deficiency (requirement) by comparing maximum nutrient content in our sample and plot-specific 

nutrient of soils. For instance, relative nitrogen deficiency is computed as the difference between 

the maximum value of nitrogen content in our sample and plot-specific nitrogen availability. About 

15 percent of the plots had acidic soils, while the majority 83 percent had neutral soil properties. 

Based on the self-reported soil quality information, 44 percent of the plots are reported to have 

good soil quality, 51 percent fair soil quality, and only 1 percent poor soil quality. These self-

reported indicators are only weakly correlated with soil organic carbon (SOC) content, the most 

common objective measure of soil quality (Gourlay et al., 2017). 

We note that some of the soil properties described above are strongly correlated among 

each other (see Table A1 in the Appendix; see also Gourlay et al., 2017). For instance, soil organic 

carbon content in soils is strongly correlated with nitrogen content (with a pairwise correlation of 

0.95). This implies that we cannot control both in our regressions because of multicollinearity 

problems. Similarly, nitrogen and phosphorus availability in soils are significantly correlated. On 

the other hand, objective measures of soil quality (e.g., SOC content) are not strongly correlated 

with self-reported indicators of soil fertility. For instance, the pairwise correlation between self-

reported indicator for “good” soils and SOC is very small and statistically insignificant (Table A1).   

 
12 Naidu et al. (2006) classify soils with nitrogen nutrient availability of 0.1-0.3 percent as “marginally suitable” for 
maize production, while those above 0.5 percent are classified as “highly suitable”. 
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Table 1: Sample Descriptive Statistics  

Variable No. 
observations 

Mean Std. Dev. 

Dependent variables    
Yield (output per hectare, kg) 2,142 1446.43 3908.67 
Yield of cereal crops 879 1612.72 2864.15 
Nitrogen/ha application (kg) 2,142 7.21 23.40 
Phosphorus/ ha application (kg) 2,142 8.98 27.44 
Fertilizer applied (0/1) 2,142 0.37 0.48 
Improved seed applied (0/1) 2,140 0.14 0.34 
Explanatory variables    
Objective soil indicators    
Nitrogen content (%)-topsoil 2,142 0.27 0.11 
Phosphorus content (mg/kg)-topsoil 1,996 403.47 322.10 
Soil organic carbon content (%)-topsoil 2,142 3.17 1.15 
Relative nitrogen deficiency- topsoil 2,142 0.69 0.11 
Relative phosphorus deficiency- topsoil 1,996 1731.52 322.10 
Acidic (soil pH<5.5)- topsoil 2,142 0.15 0.36 
Neutral (5.5<=soil pH<=8)- topsoil 2,142 0.83 0.37 
Alkaline (soil pH>8)- topsoil 2,142 0.02 0.14 
Subjective soil indicators    
Self-reported soil quality: good (0/1) 2,141 0.44 0.50 
Self-reported soil quality: fair (0/1) 2,141 0.51 0.50 
Self-reported soil quality: poor (0/1) 2,141 0.05 0.22 
Self-reported soil color: black (0/1) 2,141 0.37 0.48 
Self-reported soil color: red (0/1) 2,141 0.46 0.50 
Self-reported soil color: white/light (0/1) 2,141 0.16 0.36 
Self-reported soil color: yellow (0/1) 2,141 0.01 0.10 
Household and plot characteristics    
Gender of household head (0/1) 2,142 0.82 0.38 
Age of household head (years) 2,142 43.54 15.52 
Household head literate (0/1) 2,142 0.40 0.49 
Household size (number) 2,142 5.79 2.28 
Value of assets (ETB)13 2,142 2376.03 5318.05 
Plot is owned by household (0/1) 2,142 0.76 0.43 
Distance from home (km) 2,142 0.75 2.87 
Plot size (hectare) 2,142 0.27 0.29 
Plot’s slope is flat (0/1) 2,142 0.49 0.50 
Plot is intensively cultivated (for the last 10 years) 2,142 0.46 0.50 
Plot left fallow last season (0/1) 2,142 0.07 0.25 

Source: Authors’ calculation based on LASER data. We note that our unit of analysis is at plot-crop-level because 
some input management practices vary across crops planted in the same plot. Furthermore, some of the 
information (e.g., production) are collected for each crop in each plot.  

 

 
13 ETB stands for Ethiopian Birr. At the time of survey, 1 USD=19 ETB. 
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4. Empirical Estimation Strategy 
To understand farmers’ fertilizer use in response to soil properties and nutrient requirements, we 

estimate the following input demand function that quantifies the elasticity of fertilizer use to soil 

properties and nutrient requirements.  

𝐷𝐷ℎ𝑝𝑝𝑝𝑝 = 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑝𝑝 + 𝛽𝛽2𝑋𝑋ℎ𝑝𝑝𝑝𝑝 + 𝛼𝛼ℎ + 𝛼𝛼𝑝𝑝 + 𝜀𝜀ℎ𝑝𝑝𝑝𝑝                           (1) 

where 𝐷𝐷ℎ𝑝𝑝𝑝𝑝 stands for households (h) demand for specific type of fertilizer (nitrogen and 

phosphorus in our case) for each plot (p) and crop (c). 𝐷𝐷ℎ𝑝𝑝𝑝𝑝 assumes both binary indicator variables 

for fertilizer use (DAP and urea) and continuous measures of fertilizer application per hectare. For 

continuous measures of fertilizer application rate, we took inverse hyperbolic sine (IHS) 

transformation to keep zero values. 𝛼𝛼ℎ stands for farmer-specific effects. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑝𝑝 captures a vector 

of objectively measured and self-reported soil characteristics. These include objectively measured 

information on soil health, including macronutrients (nitrogen and phosphorus) deficiencies as 

well as overall soil quality indicators, including soil pH. In the interest of uncovering responses to 

perceived soil-qualities, this vector (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑝𝑝) also includes self-reported soil-quality indicators. The 

vector of parameters captured by 𝛽𝛽1 quantifies farmers’ response to soil properties and 

requirements. These coefficients can be interpreted as fertilizer demand responses with respect to 

a marginal change in soil property or soil nutrient requirement. For instance, we quantify fertilizer 

demand elasticities associated with a unit reduction in soil nutrients (nitrogen or phosphorus).14 

𝑋𝑋ℎ𝑝𝑝𝑝𝑝 captures household, plot and crop-level characteristics that may affect demand for chemical 

fertilizers. 𝛼𝛼𝑝𝑝 stands for crop fixed effects, which can capture differences in fertilizer and 

associated nutrient requirements as well as associated responses by farmers. 𝜀𝜀ℎ𝑝𝑝𝑝𝑝 absorbs other 

unobserved factors that may generate variations in demand for fertilizers. 

One practical limitation in implementing the empirical specification in equation (1) relates 

to: (i) lack of variation in some soil properties across plots managed by the same farmer, and (ii) 

the fact that substantial share of the farmers in our sample have a single plot. We have a total of 

1007 unique households in our data and 1677 unique plots, implying that a good number of 

households have single plots. These imply that potential impacts based on fixed effect 

specifications are likely to come from a small share of our sample. Because of these two 

 
14 We note that IHS transformation of small values (e.g., fertilizer use rates) require further adjustments to be 
interpreted as elasticities (Bellemare and Wichman, 2020), an adjustment we apply when interpreting coefficients. 
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limitations, we employ the Mundlak-Chamberlain correlated random effect (CRE) approach 

(Mundlak, 1978; Chamberlain, 1984) instead of the traditional fixed effects model. Following this 

approach, one can decompose 𝛼𝛼ℎ into mean value of plot-varying characteristics (𝑋𝑋�ℎ𝑝𝑝)  and the 

usual random effect (𝜖𝜖ℎ𝑝𝑝𝑝𝑝) uncorrelated with the explanatory variables as follows: 𝛼𝛼ℎ = 𝑋𝑋�ℎ𝑝𝑝𝑝𝑝 +

𝜖𝜖ℎ𝑝𝑝𝑝𝑝. We thus implement correlated random effect model by controlling for average plot-varying 

components of the model to capture unobserved plot-invariant heterogeneity, under the assumption 

that such heterogeneity is correlated with farmer-specific effects (see, Wooldridge, 2010). 

The vector of parameters of interest captured by 𝛽𝛽1 in equation (1), could also be biased 

because of reverse causality as soil properties, including macronutrient content in soils, can be 

affected by recent fertilizer applications. Recent nitrogen and phosphorus applications are likely 

to accumulate in soils, which may generate positive correlation between soil properties and 

fertilizer applications, and hence an upward bias in the vector of parameters (𝛽𝛽1) in equation (1). 

For instance, phosphorous applications are likely to carry over to the next season as plant growth 

and crops generally use only a portion of applied phosphorous in the first year of application. 

Similarly, fertilizer applications may also facilitate soil acidification. For these reasons, we are 

cautious in interpreting our results and refrain from claiming clean causality. That said, we believe 

some of these biases may be captured by the average plot-varying characteristics we control for, 

especially if farmers’ fertilizer applications and farm management practices are similar across 

plots. Furthermore, we also control for farming practices and plot-use in the last season, including 

whether the plot has been left fallow and whether the plot has been consecutively under cultivation 

for the last ten years. Any left-over reverse causality effects are likely to cause biases that we can 

anticipate. For instance, if recent nitrogen and phosphorus applications are driving macronutrient 

content in soils, we expect positive correlations between macronutrient content and fertilizer 

applications. On the other hand, if farmers respond to macronutrient requirements appropriately, 

we expect negative association between soil nutrient availability and fertilizer applications.  

We estimate the following empirical specification to assess the implications of fertilizer 

use and the role of soil properties to yield responses:   

𝑦𝑦ℎ𝑝𝑝𝑝𝑝 = 𝛼𝛼1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑝𝑝 + 𝛼𝛼2𝐷𝐷ℎ𝑝𝑝𝑝𝑝 + 𝛼𝛼3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑝𝑝 ∗ 𝐷𝐷ℎ𝑝𝑝𝑝𝑝 + 𝛼𝛼4𝑋𝑋ℎ𝑝𝑝𝑝𝑝 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀ℎ𝑝𝑝                    (2) 

where 𝑦𝑦ℎ𝑝𝑝𝑝𝑝 now stands for yield (output per hectare) and all remaining terms except the interaction 

terms are as described in equation (1). 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑝𝑝 stands for a vector of soli properties, including 
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relative macronutrient deficiencies and soil acidity. The interaction terms between soil 

macronutrient deficiencies and fertilizer application are the new terms and main variables of 

interest in equation (2). The vector of parameters captured by 𝛼𝛼3 quantifies the role of soil 

properties, including macronutrient deficiencies (or requirements) and soil acidity, in mediating 

the marginal impacts of fertilizers. These are important parameters that can inform us about the 

implication of mismatch or matching between soil nutrient requirements and farmers’ fertilizer 

applications. For instance, these parameters can detect potential yield gains (losses) associated 

with applying nitrogen or phosphorus fertilizers on soils that are deficient (abundant) of these 

macronutrients. Similarly, these parameters can help to quantify potential yield gains (losses) when 

chemical fertilizers are applied on acidic or alkaline soils. Overall, the parameters captured in 

𝛼𝛼2 and  𝛼𝛼3 can inform us whether farmers’ chemical fertilizer applications are productivity-

enhancing or not. Following the Mundlak-Chamberlain approach and to capture plot-invariant 

farmer-specific unobserved heterogeneity, we control for average plot-varying characteristics and 

hence implement a correlated random effect model. These additional controls as well as the long 

list of observable characteristics and crop fixed effects help to minimize potential unobserved 

heterogeneity that may confound our estimations. However, even the simple associational 

evidence between soil nutrient requirements and fertilizer application rates as well as their 

implications to yield responses can explain why marginal returns to fertilizers can be low and 

hence inform fertilizer policies. 

For simplicity, we estimate linear models. For those sufficiently continuous outcomes and 

soil property indicators we take inverse hyperbolic sine (IHS) transformations. For these cases, the 

estimates in equation (1)-(2) represent elasticities, with slight adjustments when these 

transformations are applied to small values (Bellemare and Wichman, 2020). Households and plots 

in the same community are expected to share some unobserved effects, arising from similar farm 

management skills. We thus cluster standard errors at village level. 

 

5. Estimation Results and Discussion  
In this section we report the main estimation results based on equation (1) and (2). Although some 

of the relationships we report may carry causal interpretations, we refrain from claiming clean 

causality throughout our discussions. However, the associational relationship between soil nutrient 

requirements and fertilizer applications as well as potential yield implications are useful and 
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informative. We first present estimation results based on equation (1) in Section 5.1 and we look 

at the potential implications of farmers’ responses to soil properties and nutrient deficiencies in 

Section 5.2.  

 

5.1 Soil properties and farmers’ fertilizer application  
As a first stage of our analysis, we examine how farmers’ demand for fertilizers respond to specific 

soil properties, including objective and self-reported measures of soil quality and nutrient 

deficiencies. We emphasize that some of the objective measures of soil health and nutrient content, 

including macronutrient (nitrogen and phosphorus) availability and soil pH are not available to 

farmers. However, the LASER survey elicits farmers’ perceived soil quality and soil color, which 

are commonly considered as indicators of soil properties. We also note that these objective and 

perceived indicators are expected to be correlated with other soil properties and self-reported soil 

quality indicators. However, as Gourlay et al. (2017) show the correlation between objective and 

self-reported measures of soil quality maybe weak. If so, this suggests farmers lack accurate 

knowledge about their soil quality and nutrient requirements. In particular, Gourlay et al. (2017) 

show that subsoil properties are not meaningfully correlated with farmers’ assessment of soil 

properties and input applications. We expect that topsoil properties are relatively easier to know 

and characterize than subsoil properties.15  Thus, in our estimations we focus on topsoil properties. 

In Table 2 we report input demand function estimates associated with farmers’ fertilizer 

application decisions. DAP and urea are the two dominant chemical fertilizers that are meant to 

address macronutrient (nitrogen and phosphorus) deficiencies in Ethiopia. Using the information 

on DAP and urea ingredient compositions, we convert farmers’ fertilizer applications into nitrogen 

and phosphorus equivalent per hectare. If farmers are responding to soil nutrient deficiencies, we 

expect a strong inverse relationship between soil nutrient content and fertilizer applications. The 

specifications in the first and third columns of Table 2 characterize input demand responses as a 

function of objective and self-reported indicators of soil properties and crop dummies. To probe 

such responses further, we expand these parsimonious specifications by including additional 

household and plot-level characteristics in the second and fourth column of Table 2. Thus, our 

preferred specifications are those in column 2 and 4. 

 
15 Gourlay et al. (2017) show that subjective indicators of soil quality relatively better predict topsoil properties than 

subsoil soil health measures. 
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The results in Table 2 show fertilizer demand elasticities associated with soil macronutrient 

contents. The outcome variables in this table are inverse hyperbolic sine (IHS) transformations of 

nitrogen and phosphorus applied per hectare.  The first two rows of Table 2 show farmers’ response 

to soil macronutrient (nitrogen and phosphorus) availability (deficiencies). For instance, the first 

row shows that soil nitrogen content is not statistically correlated with nitrogen and phosphorus 

application rates. This suggests that farmers are not appropriately responding to soil nitrogen 

deficiencies. The second row in Table 2 indicate that phosphorus application rates are responsive 

to soil macronutrients deficiencies as shown by the statistically significant negative coefficients. 

For instance, one percent reduction in soil phosphorus content is associated with about 0.3 percent 

increase in nitrogen fertilizer applications. Thus, while phosphorus fertilizer responses are 

consistent with nutrient requirements nitrogen fertilizer application rates are not consistent with 

nutrient deficiencies (agronomic recommendations). Farmers are applying nitrogen fertilizers to 

soils lacking phosphorus. This may be driven by lack of knowledge on macronutrient requirements 

or lack of appropriate chemical fertilizers in rural markets. In the context of Ethiopia DAP 

fertilizer, which contains both phosphorus and nitrogen, is relatively more accessible than urea, 

which mainly contains nitrogen.   

The next rows in Table 2 suggest that farmers respond to soil acidity, by applying higher 

nitrogen and phosphorus fertilizers on acidic soils and reducing fertilizer application on alkaline 

soils, relative to soils with normal pH (pH: 5.5-8). These responses are consistently observed for 

both nitrogen and phosphorus fertilizers. These interesting patterns are noteworthy as such 

responses may affect marginal yield response associated with fertilizer applications and hence may 

not be yield-enhancing (e.g., Burke et al., 2017). We note that farmers are less likely to know their 

soil pH. However, farmers may learn about other observable soil attributes associated with soil 

acidity, to which they tend to respond. Thus, these responses are probably driven by learned 

experiences than through objective knowledge and measure of soil acidity. 

 Interestingly, farmers appear to respond to subjective (perceived) indicators of soil quality, 

including self-reported ranking of soil quality and soil color. Farmers are likely to apply slightly 

higher fertilizer per unit of land on (perceived) poor and fair quality soils, relative to those soils 

perceived as good quality. Similarly, farmers adjust fertilizer use depending on soil colors: red and 

white/light colored soils receive lower amounts of fertilizers per unit of land than black colored 

soils. The response to soil colors is particularly strong. For instance, relative to black soils 
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white/light colored soils receive 35-38 percent higher nitrogen and phosphorus fertilizers per 

hectare.16 This is intuitive as farmers are shown to use soil colors as strong indicator of overall soil 

quality (Gourlay et al., 2017). As red and white/light colored soils are shown to be of poor quality 

and negatively correlated with objective measures of soil quality (Gourlay et al., 2017), our 

findings suggest that farmers are likely to apply higher amounts of chemical fertilizers on 

(perceivably) poor soils. This evidence is consistent with evolving pieces of evidence showing that 

farmers are more likely to respond to perceived input qualities than objectively measured 

attributes, which are not readily available to farmers (Abay et al., 2021; Wossen et al., 2021). For 

instance, Abay et al. (2021) show that farmers’ input applications respond to self-reported plot size 

than to objectively measured plot size. Similarly, Wossen et al. (2021) find that input application 

rates respond more to perceived crop variety than to DNA-fingerprinted crop varieties. 

We run two additional estimations to probe the robustness of the results in Table 3. First, 

to assess if the transformation and conversion of variables is driving our results, we simply use 

binary indicators of fertilizer use as well as only intensive margin of fertilizer application. In the 

first four columns in Table A2, we characterize adoption of DAP and urea fertilizers as a function 

of soil nutrient availability and other plot-level characteristics. We know that DAP mostly contains 

phosphorus while urea contains nitrogen nutrients. Thus, if farmers are responding to soil nutrient 

requirements strongly, we expect statistically significant and strong negative association between 

phosphorus availability in soils and DAP application as well as between nitrogen availability in 

soils and urea application. The last two columns in Table A2 estimate similar input demand 

functions focusing on the intensive margin of fertilizer application. The results in Table A2 show 

statistically insignificant associations between urea application and nitrogen availability, and 

significant associations between DAP application and phosphorus availability in soils. Second, we 

restrict the sample to cereal crops (e.g., maize, wheat, teff, barley, sorghum), which usually receive 

higher rate of fertilizer applications. The results based on this restricted sample show similar 

evidence (see Table A3). 

 
16 This is computed using exp (𝛽𝛽) − 1. 
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Table 2: Farmers’ response to soil nutrient requirement 

 (1) (2) (3) (4) 
Explanatory variables  IHS(nitrogen/ 

ha) 
IHS(nitro
gen/ha) 

IHS(phosp
horus/ ha) 

IHS(phosphorus/ 
ha) 

Log (Nitrogen content (%) topsoil) 0.510 0.080 0.959 0.554 
 (0.899) (0.865) (0.884) (0.834) 
Log (Phosphorus content (mg/kg) topsoil) -0.292*** -0.272*** -0.335*** -0.316*** 
 (0.074) (0.070) (0.074) (0.071) 
Acidic topsoil (soil pH<5.5) 0.460** 0.439** 0.424** 0.394* 
 (0.202) (0.197) (0.216) (0.220) 
Alkaline topsoil (soil pH>8) -0.891*** -0.662** -0.819*** -0.621* 
 (0.317) (0.323) (0.311) (0.336) 
Self-reported soil quality: fair  0.104 0.108 0.145 0.144 
 (0.131) (0.138) (0.132) (0.137) 
Self-reported soil quality: poor 0.403 0.405 0.573* 0.565* 
 (0.272) (0.279) (0.309) (0.305) 
Self-reported soil color: red  -0.257 -0.174 -0.327* -0.237 
 (0.172) (0.164) (0.180) (0.166) 
Self-reported soil color: white/light -0.543*** -0.420** -0.600*** -0.473** 
 (0.180) (0.175) (0.201) (0.192) 
Self-reported soil color: yellow  -0.120 -0.261 -0.213 -0.347 
 (0.390) (0.413) (0.370) (0.431) 
Gender of household head male  -0.136  -0.175 
  (0.186)  (0.188) 
Age of household head  -0.006*  -0.006 
  (0.004)  (0.004) 
Household head literate  0.293*  0.304** 
  (0.150)  (0.152) 
Household size  -0.046  -0.043 
  (0.028)  (0.028) 
Log (value of assets)  0.238***  0.247*** 
  (0.067)  (0.065) 
Plot is owned by household   0.454  0.648 
  (0.483)  (0.459) 
Distance from home (km)  -0.021  -0.021 
  (0.045)  (0.041) 
Log (plot size)  0.289***  0.244*** 
  (0.082)  (0.087) 
Slope of plot is flat  -0.323  -0.361 
  (0.209)  (0.233) 
Plot is intensively cultivated (in the last 10 years)  -0.142  -0.228 
  (0.205)  (0.239) 
Plot left fallow last season  -0.613  -0.455 
  (0.385)  (0.392) 
Crop fixed effects  Yes  Yes  Yes  Yes  
Plot-varying averages No  Yes  No Yes  
No. observations  1978 1958 1978 1958 

Source: Authors’ calculation based on LASER data. 
Notes: IHS stands for inverse hyperbolic sine transformation of input values. The base outcome for soil acidity level 
is neutral soils (with 5.5≤pH≤8). The base (self-reported) soil quality indicator is “good” while black colored soils 
are the base outcomes for soil color. Moderate and steep sloped plots serve as base outcomes for comparing the role 
of slope of plots on fertilizer application rates. Standard errors, clustered at household level, are given in 
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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5.2 Soil nutrient requirement, farmers’ fertilizer application and yield response 
In this section, we explore the implications of farmers’ response to soil nutrient requirement in 

terms of fertilizer application on yield responses. Table 3 presents results based on estimation of 

equation (2) using correlated random effects. The columns provide yield responses to different 

types of fertilizers, mainly nitrogen and phosphorous fertilizers, as well as their interactions with 

soil nutrient deficiencies. The main parameters of interest are therefore those estimates associated 

with the interaction terms between soil nutrient deficiency (or requirement) and application of 

fertilizers in the third and sixth rows of Table 3. These estimates inform us whether and to what 

extent mismatch between soil nutrient requirements and their actual applications can result in 

potential yield losses.  

The results in column (1) and (2) indicate that generally nitrogen fertilizer applications 

significantly increase yield. For instance, the first column shows that a 1 percent increase in 

nitrogen fertilizer application is associated with about 0.1 percent yield increase. However, the 

marginal yield response is much higher when applied on nitrogen deficient soils. The interaction 

term between nitrogen fertilizer application and soil nitrogen deficiency is large and statistically 

significant. The results in column (3) and (4) provide results associated with yield responses 

associated with phosphorus applications. The fourth column shows more interesting results: 

phosphorus applications are yield-enhancing when applied on phosphorus deficient soils but can 

be yield-reducing when applied on phosphorus abundant or other soils. While the interaction term 

between phosphorus fertilizer application and soil phosphorus deficiency appears to be positive 

and statistically significant the main effect associated with phosphorus fertilizer application is 

negative. In other words, these results suggest that use of nitrogen and phosphorous are yield-

increasing when applied to their respective nutrient deficient soils than otherwise. We run 

additional robustness exercises focusing on cereal crops, which usually receive higher application 

of chemical fertilizers in Ethiopia. These results show similar evidence (see Table A4 in the 

Appendix)  

To facilitate interpretation, we compute marginal yield responses (elasticities) associated 

with chemical fertilizer application on soils with varying nitrogen and phosphorus deficiency. The 

marginal plots in Figure 1 show yield responses (elasticities) associated with nitrogen and 

phosphorus applications. The first graph shows that elasticities associated with nitrogen fertilizer 

applications increase with nitrogen deficiency in soils. Nitrogen applications on relatively nitrogen 
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abundant soils does not generate statistically significant yield response. The second graph in Figure 

1 shows that marginal yield responses associated with phosphorus application increases with soil 

phosphorus requirement. Indeed, elasticities associated phosphorus applications are negative and 

statistically insignificant for those farmers applying phosphorus fertilizers on phosphorus abundant 

soils. This implies that yield responses are positive and increasing with appropriate fertilizer 

applications on nutrient deficient soils. On the other hand, these results suggest that those farmers 

applying inappropriate chemical fertilizers are incurring substantial costs with little or no yield 

gains. 

These results are not surprising given that farmers have almost no access to soil tests and 

hence information on soil nutrient requirement. Furthermore, substantial soil heterogeneity across 

farms and villages can impede learning and nutrient use efficiencies (Tittonell et al., 2008; Otsuka 

and Larson, 2013; Tjernstrom, 2017). Furthermore, farmers have varying cropping plans and crop 

choices, that existing recommendations and information may not be relevant to farmer specific 

context. These contexts and conditions can render the usual blanket recommendations by 

governments and extension services ineffective (Tittonell et al., 2008; Kihara et al., 2016; Harou 

et al., 2018; Gourlay et al., 2017; Ayalew et al., 2020). Ensuring efficient use of fertilizers as in 

the context of this study thus require site-specific and targeted use of fertilizers within 

heterogenous farms guided by agronomic measures to improve nutrient capture and utilization 

(Tittonell et al., 2008; Tjernstrom et al., 2018). However, extension services in Ethiopia mostly 

focus on expanding and improving adoption of improved inputs than appropriate management of 

these agricultural inputs (Berhane et al., 2018). Poor matching of fertilizers applications with 

actual soil nutrient deficiency can hamper both adoption of fertilizers (Tjernstrom et al., 2018) and 

reduce marginal yield responses associated with fertilizer applications. Overall, our findings 

suggest that sustainable increases in crop productivity in SSA require tailoring of soil fertility 

management practices to site-specific conditions (Kihara et al., 2016; Giller et al., 2009; Vanlauwe 

et al., 2015).  

The significant variability in marginal yield responses associated with fertilizer 

applications across varying soil nutrient requirement provide an additional explanation for existing 

heterogenous marginal returns to chemical fertilizers. Thus, mismatch between fertilizer 

applications and soil nutrient requirements may explain the low and heterogeneous marginal 

returns associated with chemical fertilizers in SSA. For instance, our results show that nitrogen 
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and phosphorus fertilizers do not enhance yield when applied on soils with abundant nitrogen and 

phosphorus. These findings may help to explain the empirical puzzle associated with low adoption 

of modern agricultural inputs in SSA. 

In terms of improving measurement of agricultural metrics and alleviating asymmetric 

information in input quality, our findings suggest that improving agricultural statistics by reducing 

the uncertainties in soil quality assessment can improve decision-making and farm management 

practices. The availability of objective measures of soil properties can allow farmers experiment 

and share their knowledge consistently through targeted learning approaches. Accurate measures 

of agricultural metrics, including soil properties, can inform policy makers about the potential and 

marginal returns to improved agricultural inputs, which in turn, can inform conventional 

technology diffusion strategies.  
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Table 3: Yield response to soil nutrient requirement and fertilizer applications 
 (1) (2) (3) (4) 
 Log(yield) Log (yield) Log(yield) Log(yield) 
IHS (Nitrogen application per ha) 0.133*** 0.189*** 0.134*** 0.138*** 
 (0.045) (0.061) (0.048) (0.051) 
IHS (phosphorus application per ha) -0.005 0.017 -0.011 -2.092** 
 (0.038) (0.039) (0.041) (0.999) 
Improved seed 0.030 -0.035 0.019 -0.067 
 (0.090) (0.098) (0.093) (0.107) 
Acidic topsoil (soil pH<5.5) -0.108 0.094 -0.207 -0.028 
 (0.338) (0.316) (0.375) (0.344) 
Alkaline topsoil (soil pH>8) 0.079 0.292** 0.113 0.354** 
 (0.154) (0.135) (0.161) (0.147) 
Log (relative nitrogen deficiency) -0.577* -0.437   
 (0.337) (0.280)   
Nitrogen application #relative nitrogen deficiency  0.222*   
  (0.135)   
Log (relative phosphorus deficiency)   -0.211 -0.062 
   (0.233) (0.243) 
Phosphorus application #relative phosphorus deficiency    0.275** 
    (0.131) 
Gender of household head  -0.076  -0.082 
  (0.122)  (0.131) 
Age of household head  -0.001  -0.001 
  (0.003)  (0.003) 
Household head literate  -0.022  -0.038 
  (0.096)  (0.100) 
Household size  0.019  0.018 
  (0.018)  (0.019) 
Log (value of assets)  0.186***  0.197*** 
  (0.037)  (0.037) 
Plot is owned by household   -0.199  -0.130 
  (0.224)  (0.220) 
Distance from home   0.007  0.021 
  (0.015)  (0.029) 
Log (plot size)  -0.528***  -0.535*** 
  (0.075)  (0.078) 
Slope of plot is flat  -0.029  -0.029 
  (0.150)  (0.148) 
Plot is intensively cultivated   0.183  0.165 
  (0.218)  (0.226) 
Plot left fallow last season  -0.098  -0.118 
  (0.313)  (0.285) 
Crop fixed effects  Yes  Yes  Yes  Yes  
Plot-varying averages No  Yes  No Yes  
No. observations  1821 1807 1688 1674 

Source: Authors’ calculation based on LASER data. 
Notes: IHS stands for inverse hyperbolic sine transformation of input values. The base outcome for soil acidity level 

is neutral soils (with 5.5≤pH≤8). The base (self-reported) soil quality indicator is “good” while black colored 
soils are the base outcomes for soil color. Moderate and steep sloped plots serve as base outcomes for 
comparing the role of slope of plots on fertilizer application rates. Standard errors, clustered at village level, 
are given in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Figure 1. Average yield response to fertilizer applications on nitrogen and phosphorous 
deficient soils 
 
 

5.3  Soil Acidity, farmers’ fertilizer application and yield response 

Other properties such as soil pH are also important determinants of yield and associated fertilizer 

responses. This section presents results associated with yield responses associated with fertilizer 

applications across plots with varying soil pH. Estimation results are based on equation (2) and 

estimated using the correlated random effects model discussed earlier. Table 4 reports the key 

estimation results for yield response to fertilizer application under acidic and alkaline soil 

conditions. The first two columns report yield responses (elasticities) for nitrogen application on 

both acidic and alkaline soils and the last two columns report corresponding results for 

phosphorous applications. 

The key finding from Table 4 is that application of both nitrogen and phosphorous 

fertilizers on acidic soils reduces yield gains whereas application of the same nutrients on alkaline 

soils results in additional yield gains. This is reflected by the strongly significant and negative 

coefficients associated with the interaction terms between fertilizer applications and indicator 

variables for soil acidity. Clearly, use of fertilizers is yield increasing when applied on plots with 

high soil pH. Restricting the sample to cereal crops yields similar results (Table A5). Figure 2 

shows that average yield response to fertilizer application linearly increases with increases in soil 
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pH levels. This holds for both types of fertilizers, nitrogen and phosphorus. These results are 

consistent with findings from previous studies (e.g., Kihara et al. 2016; Burke et al., 2017).  

 Despite these striking results, we know from Table 2 that on average farmers apply more 

fertilizers on acidic soils than on alkaline soils – losing additional yield gains because of reduced 

fertilizer applications on alkaline soils and at the same time losing yield by wrongly applying them 

on acidic soils. We suspect that farmers are applying fertilizers on acidic soils thinking that this 

way they can fix soil health problems caused by acidity itself. Clearly, in the absence of well-

established plot level soil information, fertilizer application can not only lead to lower yield gains 

but also result in yield losses. This may also lead to the unintended consequences that farmers 

totally abandoning fertilizer adoption after experiencing yield losses due to inappropriate use of it. 

This may be one explanation behind the low adoption of fertilizers in SSA in the face of increased 

fertilizer supplies in recent years and the yield gaps observed in many contexts. 

 
Table 4: Yield response to soil nutrient requirement, soil acidity and fertilizer applications 

 (1) (2) (3) (4) 
 Log (yield) Log (yield) Log (yield) Log (yield) 
IHS(Nitrogen application) 0.162*** 0.141*** 0.128*** 0.113** 
 (0.041) (0.043) (0.046) (0.047) 
IHS(Phosphorus application) -0.006 0.007 0.021 0.029 
 (0.033) (0.035) (0.039) (0.041) 
Improved seed  0.065 0.295** 0.072 0.302** 
 (0.148) (0.134) (0.149) (0.135) 
Acidic topsoil (soil pH<5.5) 0.253** 0.137 0.214* 0.105 
 (0.123) (0.137) (0.122) (0.135) 
Alkaline topsoil (soil pH>8) -0.214 0.052 -0.214 0.054 
 (0.361) (0.338) (0.362) (0.338) 
IHS(nitrogen application) # Acidic topsoil (soil pH<5.5) -0.120*** -0.096***   
 (0.033) (0.037)   
IHS(nitrogen application) # Alkaline topsoil (soil pH>8) 0.139* -0.034   
 (0.079) (0.081)   
IHS(Phosphorus application) # Acidic topsoil (soil pH<5.5)   -0.097*** -0.077** 
   (0.030) (0.035) 
IHS(Phosphorus application) # Alkaline topsoil (soil pH>8)   0.116* -0.030 
   (0.067) (0.068) 
Crop fixed effects  Yes  Yes  Yes  Yes  
Household and plot-level characteristics  No Yes  No  Yes  
Plot-varying averages No  Yes  No Yes  
No. observations  1822 1808 1822 1808 
Source: Authors’ calculation based on LASER data. 
Notes: IHS stands for inverse hyperbolic sine transformation of input values. Standard errors, clustered at household 
level, are given in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Figure 2. Average yield response to fertilizer application across plots with varying soil pH. 

 

6.  Concluding Remarks 
In this paper we first examine farmers’ fertilizer application responses to soil nutrient deficiencies 

(requirements) based on their objective measures and subjective perceptions of soil quality. We 

also explore associated yield responses to fertilizer applications given actual soil nutrient 

requirements. We hypothesize that lack of access to objectively measured soil nutrient 

requirements and appropriate fertilizer recommendations may lead to mismatch between fertilizer 

applications and nutrient requirements. Such mismatch between soil nutrient requirements and 

fertilizer applications could lower yield responses. We argue that such mismatch between soil 

nutrient requirements and fertilizer applications can explain the low and heterogenous returns to 

chemical fertilizers use in SSA. To test these hypotheses, we use experimental (spectral soil 

analysis) data that provide both objective measures of soil properties, including macronutrient 

deficiencies, and self-reported indicators of soil properties. These data come from a 

methodological experiment involving spectral soil analysis of relatively large-scale plot-level soil 

samples in Ethiopia.  

We find that farmers do not appropriately respond to soil macronutrient (nitrogen and 

phosphorus) deficiencies. For instance, we find that farmers are not responding to soil nitrogen 

deficiencies. Similarly, although input demand functions respond to phosphorus deficiencies, 

farmers respond to phosphorus deficiencies by applying nitrogen fertilizers. On the other hand, 
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farmers respond to perceived poor-quality soils and acidic soils by applying higher nitrogen and 

phosphorus fertilizers. We further show that such mismatches between fertilizer applications and 

soil macronutrient requirements are potentially yield-reducing. Those farmers mismatching their 

fertilizer application and actual soil nutrient requirements are likely to forgo additional yield gains. 

Marginal yield responses associated with nitrogen (phosphorus) application increases with soil 

nitrogen (phosphorus) deficiencies. Nitrogen (phosphorus) applications on relatively nitrogen 

(phosphorus) abundant soils does not generate statistically significant yield response. This implies 

that yield responses are positive and increasing with appropriate fertilizer applications on nutrient 

deficient soils. On the other hand, these pieces of evidence suggest that those farmers applying 

inappropriate chemical fertilizers are incurring substantial costs with little or no yield gains. 

Similarly, farmers’ response to acidic soils is not productivity-enhancing, rather adversely affects 

marginal yield responses associated with inorganic fertilizers. Application of both nitrogen and 

phosphorous fertilizers on acidic soils reduce yield gains whereas application of the same nutrients 

on alkaline soils results in additional yield gains. Such disappointing experiences with fertilizer 

applications may encourage farmers totally abandon fertilizer adoption after experiencing yield 

losses due inappropriate use of it.  

These results are not surprising given that farmers have almost no access to soil tests and 

hence information on soil nutrient requirements and soil properties. The lack of such objective 

measures along with significant soil heterogeneity across farms and villages can impede learning 

and nutrient use efficiencies. This, in turn, can lead to poor matching of fertilizers applications 

with actual soil nutrient deficiencies. Our findings suggest that such mismatches can create 

significant variability in marginal yield responses associated with fertilizer applications across 

varying soil nutrient requirements, which may explain potential heterogeneities in adoption rates 

and associated marginal returns to chemical fertilizers.  

 Besides explaining potential heterogeneities in adoption and marginal returns to chemical 

fertilizers, our findings have important implications for improving input management practices 

and fertilizer diffusion strategies. Our findings suggest that sustainable increases in crop 

productivity in SSA requires tailoring soil fertility management practices to site-specific 

conditions. This reinforces evolving pieces of evidence on the potential of plot-specific fertilizer 

and related input recommendations to improve farm management practices and yield (Kihara et al. 

2016; Giller et al., 2011; Vanlauwe et al., 2015; Fishman et al., 2016; Fabregas et al., 2018; Harou 
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et al., 2018; Tjernstrom et al., 2018; Murphy et al., 2019; Ayalew et al., 2020). Strengthening 

existing extension systems in Ethiopia may help address these mismatches to ensure appropriate 

adoption of modern agricultural inputs (e.g., Berhane et al., 2018; Ragasa and Mazunda, 2018). 

Further investments in R&D that can avail soil information and agronomic recommendations can 

minimize potential inefficiencies due to information asymmetries associated with soil information. 

Finally, our findings suggest that improving agricultural statistics by reducing the uncertainties in 

soil quality assessment can improve decision-making and farm management practices. Accurate 

measures of agricultural metrics, including soil characteristics, can address farmers’ asymmetric 

information and misperceptions (Abay et al., 2021; Wossen et al., 2021). Such improvements in 

agricultural metrics can also inform policy makers about the potential and marginal returns to 

improved agricultural inputs, which in turn, can inform conventional technology diffusion 

strategies. 

Despite our attempt to shed light on farmers’ response to soil fertility as captured by both 

objective and subjective metrics, this study is not without limitations. First, measurement of some 

of our outcomes of interest (e.g., yield) may suffer from some inaccuracies, with important 

implications for computing marginal yield gains and responses (e.g., Abay et al., 2019). Second, 

our inference relies on observational data and variation and hence further studies based on 

randomized variations in access to soil nutrient information may provide additional insights on the 

inferential and behavioral implication of information asymmetry in soil nutrients. 
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APPENDIX 

Table A1: Pairwise correlations between objective and self-reported measures of soil properties. 

 
Soil organic 
carbon content  

Nitrogen 
content 
(%) 

Phosphorus 
content 
(mg/kg) 

Soil pH 
Soil quality 
good (self-
reported) 

Soil color 
black (self-
reported) 

Soil organic carbon content (%)-topsoil 1.00      
Nitrogen content (%) topsoil 0.95*** 1.00     
Phosphorus content (mg/kg) topsoil 0.55*** 0.52*** 1.00    
Soil pH-topsoil -0.17*** -0.12*** -0.04 1.00   
Soil quality good (self-reported) 0.01 0.01 0.03 -0.11** 1.00  
Soil color black (self-reported) 0.21*** 0.16*** -0.14*** 0.01 0.24*** 1.00 

Source: Authors’ calculation based on LASER data. 
Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

Table A2: Farmers’ response to soil nutrient requirement (DAP and urea application) 
 (1) (2) (3) (4) (5) (6) 
 DAP 

(dummy 
variable) 

DAP 
(dummy 
variable) 

Urea 
(dummy 
variable) 

Urea 
(dummy 
variable) 

Log(nitrogen/ 
ha) 

Log(nitrogen/ 
ha) 

Log (Nitrogen content (%) topsoil) 0.143 0.093 -0.134 -0.175 -2.389 -0.878 
 (0.155) (0.146) (0.124) (0.107) (1.896) (1.664) 
Log (Phosphorus content (mg/kg) topsoil) -0.060*** -0.054*** -0.011 -0.003 -0.219** -0.318*** 
 (0.013) (0.012) (0.010) (0.010) (0.107) (0.104) 
Acidic topsoil (soil pH<5.5) 0.069* 0.066* 0.052** 0.059** 0.443* 0.373 
 (0.036) (0.036) (0.026) (0.025) (0.255) (0.322) 
Alkaline topsoil (soil pH>8) -0.161*** -0.124* -0.104*** -0.079** -0.702 -0.428 
 (0.060) (0.065) (0.035) (0.037) (0.524) (0.563) 
Self-reported soil quality: fair  0.031 0.039* 0.006 0.019 -0.054 -0.003 
 (0.022) (0.023) (0.020) (0.018) (0.232) (0.265) 
Self-reported soil quality: poor 0.080* 0.094** -0.008 0.016 0.256 0.510 
 (0.047) (0.048) (0.028) (0.028) (0.499) (0.551) 
Self-reported soil color: red  -0.059* -0.040 -0.008 -0.004 -0.346 -0.497* 
 (0.033) (0.031) (0.022) (0.024) (0.307) (0.285) 
Self-reported soil color: white/light -0.107*** -0.087** -0.059** -0.057** -0.418 -0.497 
 (0.035) (0.034) (0.024) (0.025) (0.385) (0.449) 
Self-reported soil color: yellow  -0.045 -0.062 0.028 -0.011 -1.092* -1.249* 
 (0.060) (0.069) (0.066) (0.047) (0.638) (0.719) 
Crop fixed effects  Yes  Yes  Yes  Yes  Yes  Yes  
Household and plot-level characteristics No  Yes  No  Yes  Yes  Yes  
Plot-varying averages No  Yes  No Yes  Yes  Yes  
No. observations  1977 1957 1977 1957 714 714 

Source: Authors’ calculation based on LASER data. 
Notes: IHS stands for inverse hyperbolic sine transformation of input values. The base outcome for soil acidity level is neutral 
soils (with 5.5≤pH≤8). The base (self-reported) soil quality indicator is “good” while black colored soils are the base outcomes for 
soil color. Moderate and steep sloped plots serve as base outcomes for comparing the role of slope of plots on fertilizer application 
rates. The results in the last two columns are based on the intensive margin of fertilizer use, by restricting sample to those plots 
receiving some fertilizer. Standard errors, clustered at household level, are given in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  
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Table A3: Farmers’ response to soil nutrient requirement (focusing on cereals) 
 (1) (2) (3) (4) 
 IHS(nitrogen/ 

ha) 
IHS(nitro
gen/ha) 

IHS(phosp
horus/ ha) 

IHS(phosphorus/ 
ha) 

Log (Nitrogen content (%) topsoil) 1.606 0.925 2.315 1.554 
 (1.668) (1.514) (1.727) (1.516) 
Log (Phosphorus content (mg/kg) topsoil) -0.388*** -0.359*** -0.449*** -0.413*** 
 (0.100) (0.098) (0.102) (0.100) 
Acidic topsoil (soil pH<5.5) 0.695** 0.623** 0.539* 0.452 
 (0.292) (0.273) (0.304) (0.307) 
Alkaline topsoil (soil pH>8) -1.151*** -0.687* -1.073** -0.642 
 (0.414) (0.410) (0.431) (0.413) 
Self-reported soil quality: fair  0.371 0.293 0.386 0.290 
 (0.238) (0.261) (0.240) (0.260) 
Self-reported soil quality: poor 0.664* 0.763* 0.827* 0.899* 
 (0.386) (0.441) (0.431) (0.478) 
Self-reported soil color: red  -0.503* -0.284 -0.601** -0.366 
 (0.284) (0.271) (0.300) (0.278) 
Self-reported soil color: white/light -1.020*** -0.727** -1.027*** -0.729** 
 (0.293) (0.291) (0.333) (0.324) 
Self-reported soil color: yellow  -0.311 -1.124 -0.455 -1.324* 
 (0.936) (0.808) (0.873) (0.748) 
Crop fixed effects  Yes  Yes  Yes  Yes  
Household and plot-level characteristics No  Yes  No  Yes  
Plot-varying averages No  Yes  No Yes  
No. observations  796 791 796 791 

Source: Authors’ calculation based on LASER data. 
Notes: IHS stands for inverse hyperbolic sine transformation of input values. The base outcome for soil acidity level 
is neutral soils (with 5.5≤pH≤8). The base (self-reported) soil quality indicator is “good” while black colored soils 
are the base outcomes for soil color. Moderate and steep sloped plots serve as base outcomes for comparing the role 
of slope of plots on fertilizer application rates. Standard errors, clustered at household level, are given in 
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A4: Yield response to soil nutrient requirement and fertilizer applications (focusing on 
cereals) 

 (1) (2) (3) (4) 
 Log(yield) Log (yield) Log(yield) Log(yield) 
IHS (Nitrogen application per ha) 0.133*** 0.207*** 0.133*** 0.141*** 
 (0.048) (0.062) (0.048) (0.053) 
IHS (phosphorus application per ha) 0.050 0.054 0.050 -1.351 
 (0.041) (0.041) (0.041) (0.939) 
Improved seed 0.230 0.380*** 0.230 0.459*** 
 (0.146) (0.122) (0.146) (0.133) 
Acidic topsoil (soil pH<5.5) 0.015 -0.050 0.015 -0.119 
 (0.109) (0.099) (0.109) (0.106) 
Alkaline topsoil (soil pH>8) -0.799*** -0.362 -0.799*** -0.435 
 (0.309) (0.334) (0.309) (0.314) 
Log (relative nitrogen deficiency)  -0.626   
  (0.611)   
Nitrogen application #relative nitrogen deficiency  0.291**   
  (0.144)   
Log (relative phosphorus deficiency)    0.113 
    (0.339) 
Phosphorus application #relative phosphorus deficiency    0.181 
    (0.123) 
Crop fixed effects  Yes  Yes  Yes  Yes  
Household and plot-level characteristics  No  Yes  No  Yes  
Plot-varying averages No  Yes  No Yes  
No. observations  806 802 806 730 

Notes: IHS stands for inverse hyperbolic sine transformation of input values. The base outcome for soil acidity level 
is neutral soils (with 5.5≤pH≤8). The base (self-reported) soil quality indicator is “good” while black colored soils 
are the base outcomes for soil color. Moderate and steep sloped plots serve as base outcomes for comparing the role 
of slope of plots on fertilizer application rates. Standard errors, clustered at village level, are given in parentheses. * 
p < 0.10, ** p < 0.05, *** p < 0.01. 
 
  



36 

Table A5: Yield response to soil nutrient requirement, soil acidity and fertilizer applications 
(focusing on cereals) 

 (1) (2) (3) (4) 
 Log (yield) Log (yield) Log (yield) Log (yield) 
IHS(Nitrogen application) 0.174*** 0.142*** 0.128** 0.102** 
 (0.040) (0.041) (0.053) (0.050) 
IHS(Phosphorus application) 0.037 0.040 0.074 0.072 
 (0.033) (0.036) (0.046) (0.046) 
Improved seed  0.225 0.393*** 0.232 0.400*** 
 (0.144) (0.123) (0.147) (0.126) 
Acidic topsoil (soil pH<5.5) 0.348** 0.229* 0.269* 0.159 
 (0.159) (0.139) (0.160) (0.139) 
Alkaline topsoil (soil pH>8) -0.835** -0.369 -0.848** -0.376 
 (0.345) (0.359) (0.345) (0.358) 
IHS(nitrogen application) # Acidic topsoil (soil pH<5.5) -0.126*** -0.106***   
 (0.036) (0.034)   
IHS(nitrogen application) # Alkaline topsoil (soil pH>8) 0.240*** -0.028   
 (0.072) (0.093)   
IHS(Phosphorus application) # Acidic topsoil (soil pH<5.5)   -0.093*** -0.078*** 
   (0.032) (0.030) 
IHS(Phosphorus application) # Alkaline topsoil (soil pH>8)   0.202*** -0.026 
   (0.061) (0.078) 
Crop fixed effects  Yes  Yes  Yes  Yes  
Household and plot-level characteristics  No Yes  No  Yes  
Plot-varying averages No  Yes  No Yes  
No. observations  806 802 806 802 
Source: Authors’ calculation based on LASER data. 
Notes: IHS stands for inverse hyperbolic sine transformation of input values. The base outcome for soil acidity level 
is neutral soils (with 5.5≤pH≤8). The base (self-reported) soil quality indicator is “good” while black colored soils 
are the base outcomes for soil color. Moderate and steep sloped plots serve as base outcomes for comparing the role 
of slope of plots on fertilizer application rates. Standard errors, clustered at village level, are given in parentheses. * 
p < 0.10, ** p < 0.05, *** p < 0.01. 
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