Theory of change for the dairy value chains in Uganda, developed for the CGIAR Initiative Sustainable Animal Productivity for Livelihoods, Nutrition and Gender Inclusion
Theory of change for the dairy value chains in Uganda, developed for the CGIAR Initiative Sustainable Animal Productivity for Livelihoods, Nutrition and Gender Inclusion

Emily Ouma¹, Gebregziabher Gebreyohanes¹, Okeyo Mwai¹, Karen Marshall¹, Ben Lukuyu¹, Christopher Mukasa², Peter Oba¹, Michel Dione¹, Martha Businge¹, Jane Namatovu¹, An Notenbaert³, Rein van der Hoek³, Rekik Mourad⁴ and Isabelle Baltenweck¹

¹International Livestock Research Institute (ILRI)
²National Animal Genetic Resources and Data Bank (NAGRC&DB)
³The Alliance of Bioversity and CIAT (ABC)
⁴International Center for Agricultural Research in the Dry Areas (ICARDA)

May 2024
Contents

1 The SAPLING Initiative 1
2 Dairy value chain in Uganda 2
3 Theory of change overview 4
4 Theory of change for the dairy value chain in Uganda 5
Next steps 8
References 9
Annex 1: Elements included in the ToC 10
Annex 2: Initiative and work package level of the SAPLING results framework 11
1 The SAPLING Initiative

The CGIAR Sustainable Animal Productivity for Livelihoods, Nutrition and Gender Inclusion (SAPLING) is an initiative that focuses on sustainable animal productivity. This initiative aims to contribute to transforming livestock sectors in target countries to make them more productive, resilient, equitable and sustainable (see Box 1 on how this objective will be achieved).

The initiative is working in seven countries located in East Africa (Ethiopia, Kenya, Tanzania, Uganda), West Africa (Mali), Southeast Asia (Vietnam) and South Asia (Nepal) on a total of 15 livestock value chains (Figure 1). Within the One CGIAR, SAPLING is mapped to the action area Resilient Agrifood Systems.

Box 1 SAPLING’s objective will be achieved through five work packages:

- **Technologies and practices for sustainable livestock productivity**: developing, adapting and testing new and existing productivity- and resilience-enhancing, low-emission, scalable technologies and practices across the three main pillars of livestock productivity: improved feeds, animal health products and genetics (Work package 1).

- **Innovations and practices for safe consumption of livestock-derived foods as part of diverse diets**: co-creating innovative models and approaches for social and behaviour change communication (SBCC) and testing, and evaluating approaches for incentivizing market actors to enhance the supply of safe, nutritious and affordable livestock-derived foods (Work package 2).

- **Sustainable livestock productivity for gender equity and social inclusion**: understanding constraints and opportunities, identifying best-bet entry points, addressing constraints, and developing tools to measure progress (Work package 3).

- **Competitive and inclusive livestock value chains**: generating evidence on institutional arrangements and technical interventions to transition towards more profitable, inclusive and sustainable livestock value chains (Work package 4).

- **Evidence, decisions and scaling**: generating and consolidating evidence, models and tools to support public and private decision-making for a sustainable and inclusive livestock sector (Work package 5).

From: https://cgspace.cgiar.org/handle/10568/128150
2 Dairy value chain in Uganda

2.1 Overview

The dairy sector accounts for 7% of the nation’s agricultural gross domestic product (GDP) and contributes 50% to livestock GDP (Dairy Development Authority, 2023). The cattle sector contributed to the livelihoods of 2.3 million farming households in 2021 – 17% of the households rear exotic breeds of dairy cattle (pure or crossbreed) (UBS, 2024). In 2021, Uganda had a cattle population of 14.5 million, with approximately 11.2 million indigenous breeds and about 3.3 million exotic dairy cattle. Annual milk production was estimated at 3.72 billion litres produced by 1.9 million cows (UBS, 2024). The annual milk production represented a five-fold increase in milk production from 667.5 million litres in 2008. Exotic/crossbreed cattle contributed 75% of the milk production, while the indigenous cattle contributed 25%.

The cattle farming systems are broadly classified into two categories: the traditional system and the commercial system (FAO and New Zealand Agricultural Greenhouse Gas Research Centre, 2019). The traditional system is a subsistence-oriented system characterized by small herds of cattle that are primarily managed through family labour, with limited use of purchased inputs. The system comprises smallholder extensive (1–3 cows/household), mediumholder extensive (4–13 cows), agro-pastoral (30–40 cows) and pastoral systems (40–60 cows) (Lukuyu et al., 2023). The commercial system is characterized by use of purchased inputs and services. It is market-oriented and aims for increased productivity and profitability. It is further subdivided into smallholder intensive, mediumholder intensive, and large-scale producers (FAO and New Zealand Agricultural Greenhouse Gas Research Centre, 2019). The Western region produced the highest volume of milk constituting 44% of the total milk produced in 2021, followed by the Central region with 34% and the least was the Northern region at 4% (UBS, 2024). The bulk of milk production was from the agro-pastoral systems.

Improving dairy production and productivity is one of the government priorities under the Agro-industrialization Program of the National Development Plan III for 2020/21 to 2024/25 through value addition and processing, access to improved technologies such as breeds through artificial insemination, regulations to monitor milk quality, consumer safety, favourable taxation, targeting export markets, and strengthening producer cooperatives (National Planning Authority, 2020). Dairy industry development partners such as aBi Development Ltd and Heifer International are supporting adoption of technology by funding and donating technologies such as sealers, freezers, fodder processing machines, cutting-edge coolers, and artificial insemination kits (Lukuyu et al, 2023).

The dairy sector still faces challenges that limit its growth opportunities. These include inadequate quantity and quality feeds coupled with extreme seasonal effects, high burden of disease such as foot and mouth disease (FMD) and tick-borne diseases, low yielding breeds, and poor quality/access to inputs and services, which lead to low milk production and productivity, high animal mortalities, and reduced income at the household level. The informal market plays a dominant role in the milk trade in Uganda, often operating without adhering to the regulatory obligations imposed on formal processors. This situation presents a challenge, as processors are pressured to offer their products at prices that frequently fall below the reference price, mainly to prevent customer attrition and maintain their market share (Dairy Development Authority, 2023).
Efforts by the African Asian Dairy Genetics Gains (AADGG) program have shown that crossbreeds of indigenous and exotic dairy breeds are what smallholder dairy farmers need. Yet, current systems are unable to fully support within-country genetic evaluation, selection of adaptable high yielding dairy genetics, certification of crossbred and/or tropically adapted and productive exotic dairy genetics, and their multiplication and commercial delivery. In addition, farmers still lack tailored information, education and extension systems that can give them timely feedback and information to improve productivity and profitability of their dairy farming. The SAPLING AADGG project has started to develop a breeding program for systematic and sustainable genetic improvement to improve the availability of improved genetics to the smallholder dairy farmers. This is supported with animal identification and registration, field data capture, and genomic evaluation and selection of top ranked bulls to be used for artificial insemination and natural mating.

2.2 Sites
The sites for the dairy value chains are the district local governments of Kiruhura, Wakiso, Masaka, Luweero, Buikwe, Kabarole, Mbarara, Mukono, Mityana, Kamuli, Mpigi, Apac, Bugiri, Bukomansimbi, Bulambuli, Bushenyi, Butambala, Buyende, Gomba, Ibanda, Iganda, Isingiro, Mpigi, Nakasongola, Kabarole and Pallisa. The sites represent different milk sheds and dairy production systems in Uganda including smallholder and mediumholder extensive, agro-pastoral, smallholder and mediumholder intensive, and large-scale commercial systems.

2.3 Key value chain research questions

- Do digital tools and genomic technologies improve smallholder dairy farmers access to adaptable high yielding dairy animals?
- How does the digital extension and feedback system improve skill and knowledge of smallholder farmers and extension agents?
- Are the public and private sectors willing to support technological packages, approaches, and delivery mechanisms to improve efficiency and profitability of smallholder dairy farmers?

Key partners in this work are the National Animal Genetic Resources Centre and Data Bank (NAGRC&DB), the Dairy Development Authority (DDA), the Makerere University; the National Livestock Resources Research Institute (NaLiRRI); dairy value chain actors; URUS Group LP, dairy farmer cooperatives, Zonal Agricultural Research and Development Institutes (ZARDIs), and District Veterinary Offices.
3 Theory of change overview

Since past research has shown that successful livestock development requires integrated packages of productivity enhancing technologies and innovations along the value chain and in the enabling environment, SAPLING organizes its outputs not as individual “silver bullets” but rather in innovation packages—combinations of interrelated innovations and enabling conditions that, together, can lead to transformation and impact at scale in a specific context\(^1\) — that target specific sets of inter-related, context-specific opportunities and constraints.

SAPLING chose to develop theories of change (ToCs) at the value chain (VC) level to demonstrate how the outputs of SAPLING’s Work Packages come together in Innovation Packages to contribute to outcomes on the ground. ToCs were initially developed in participatory workshops with stakeholders and later updated to reflect changes in programming, to clarify and firm up the underlying logic—via specification of sub-pathways—and to increase consistency across value chains. See here for information on the stakeholder workshop that initiated the development of the ToC for dairy in Uganda (ILRI, 2022). Going forward, regular review and updating is planned as part of program management and MELIA. See here for the 2023 ToC review and reflection. For more information on how the Value Chain ToCs fit into the overall SAPLING monitoring, evaluation and learning plan, see the SAPLING MEL Brief.

1. Definitions from CGIAR MEL glossary unless otherwise noted.
Theory of change for the dairy value chain in Uganda, developed for the CGIAR Initiative Sustainable Animal Productivity for Livelihoods, Nutrition and Gender Inclusion

4 Theory of change for the dairy value chain in Uganda

Figure 2: Theory of change for the dairy value chain in Uganda indicating innovation packages (IPs), immediate outcomes (IOs), and end-of-initiative (EOI) outcomes in boxes. Linkages to work package (WP) outcomes are presented in the other outcome boxes. See Annex 2 for full details of all SAPLING outcomes.

Figure 2 presents the ToC of the dairy value chain in Uganda with target values determined as given [here](#). It contains three sub-pathways, targeting policymakers/public and private sector (1); input and service providers, men and women dairy producers and other VC actors (2); and dairy cooperatives (3). While the three pathways are mutually reinforcing, especially in the longer run, it is useful to describe them separately to make it clear how SAPLING expects early interactions and outcomes to occur. Further details about innovations and enabling elements within each innovation package are given in the boxed text.

The first sub-pathway focuses on the productivity enhancing innovations and their delivery to improve dairy cattle productivity. The productivity enhancing innovations focus on improving farmers’ access to, and uptake of, high-quality feeds and forages (IP1); improved farmer access to, and uptake of, herd health products and practices (IP2), and improved digital systems for delivery of innovations including farmer education and advisory services (IP3). As can be seen in Boxes 2–4, these IPs includes technological and institutional innovations delivered through digital solutions, as well as capacity development activities targeted at different value chain actors. Gender is integrated into all of them. IPs 1–3 together will contribute to the first three immediate outcomes (IOs) in this sub-pathway, namely that input and service providers such as animal health service suppliers, feeds and forage seed producers, and artificial inseminators (IO1), men and women dairy cattle farmers (IO3), have increased capacities in the integrated technology and best practices package, and the value chain actor linkages are strengthened through digital platforms that are effective for equitable delivery of inputs and services and that allow interactions and exchanges (IO2). Taken together, these digital platforms are expected to provide service providers with the capacity and the economic incentives to deliver the innovation packages to women and men farmers (IO8).

EOI2 is achieved as service providers invest their own resources, a total of at least USD 10,000, in actively using the digital solutions to deliver and promote the productivity enhancing packages to dairy farmers. EOI1 is achieved when dairy farmers adopt technology packages and institutional innovations delivered through the digital solutions that also enable access to technologies, inputs and markets, resulting in improvements in productivity. IP1 is also expecting to increase the awareness of regulatory authorities, mainly in the crop sector, about certification and enforcement of regulations to improve forage seeds quality. Ultimately this will contribute to changes in regulation (EOI4) that
Theory of change for the dairy value chains in Uganda, developed for the CGIAR Initiative Sustainable Animal Productivity for Livelihoods, Nutrition and Gender Inclusion

improve the enabling environment for forage production and utilization, further contributing EOI1 and 2.

Several assumptions underlie the logic of the first sub-pathway. The first is that women and men dairy producers and value chain actors see the need for the digital innovations and business models given their situation and market conditions. This will be assessed as part of the AADGG activities, focusing on the number of value chain actors that will be registered onto the digital platforms and utilize it. Another key assumption is that the integrated packages contribute to increased productivity and income. This will be tracked through the AADGG data collection platform that covers both farm- and animal-level data including productivity and income indicators. Finally, the assumption that public and private sector players see value and opportunities in investing in digital tools to deliver innovations is being tracked through SAPLING monitoring, evaluation and learning activities.

The second sub-pathway rests on the recognition that sustainable improvements in dairy productivity will come through a national digital system for animal and farm data capture that enables identification of appropriate dairy genetics coupled with certification of bulls and bull dams based on genomic estimated breeding value and breed composition to support dairy cattle breeding, management and transaction. This is in parallel with delivery of bundled input and support services to dairy farmers by capacitated input and service providers through digital platforms that strengthen value chain linkages and allows interactions and exchanges. Innovation package 3 (IP3) focuses on an integrated set of digital solutions for enhanced dairy farming. As presented in Box 4, this includes digital performance and pedigree recording, and phone-based farmer education delivery systems based on animal performance and cow calendar-based feedback. It also includes establishment of pipelines to ensure that the data generated can further define robust breeding objectives and the development of more comprehensive genomic evaluation pipelines. The IP3 will be delivered through the AADGG program activities, mapped to SAPLING dairy value chain in Uganda.

IP3 will contribute to one immediate outcome (IO) in this sub-pathway, namely that public partners have increased capacities in the national digital system for data capture and its utilization for improving the dairy sector (IO5). This digital system is expected to support the public sector in the design of a sustainable dairy cattle breeding program (IO9) and further utilization of the data to inform decisions, policies, regulations and investments in the sector (EOI4) and sustainably select breeding dairy seed stock.

The third sub-pathway recognizes the important role of dairy cooperatives as a business model that can enhance member farmers access to inputs and services including capacity development due to the advantages of economies of scale. IP4 consists of enhanced dairy farmer linkages to inputs and services and other business development services through dairy cooperatives business model (Box 5). IP4 is expected to strengthen the linkages between dairy cooperatives and networks with business development services (IO7) and to increase the capacities of dairy cooperatives in governance and involvement in business models for enhancing access to inputs, services, and markets for members through utilization of the digital solutions (IO6). This will ultimately lead to dairy farmers’ use of the technological and institutional innovations resulting in improved productivity (EOI1).

A key assumption underlying this sub-pathway is that improved governance of the dairy cooperatives and business models will improve market access and income for members. The activities under IP4 are led by the Dairy Development Authority one of the key partners in the dairy value chains. SAPLING will utilize this partnership to report on the outcomes associated with the third sub-pathway.

Box 2 IP1: Improving farmer access to, and uptake of, high-quality feeds and forages.

Components of the package comprise:

- Training and certification program for small-scale feed producers.
- Technical capacity building for forage seed producers specifically in best practices for forage seed production.
- New drought-tolerant and adapted forage varieties through multilocational trials.
- Model farms to demonstrate the benefits of the drought-tolerant and adapted forage varieties.
- Forage seed promotions through exhibitions with the National Agricultural Research Organization.
- Guidelines for strengthened regulations and enforcement to ensure high quality of forage seeds.
- Training of the forage seed regulators on the guidelines for high-quality forage seeds
- Gendered feed assessments (G-FEAST) to identify locally available feed resources and feed interventions that take into consideration gendered constraints and opportunities.

IP1 draws on work from Work Packages 1, 3, and 4.
Box 3 IP2: Improving farmer access to, and uptake of, herd health products and practices delivered through Livestock Champions

Components of the package comprise:

- Context-specific gender-sensitive behaviour change communications (BCC) package on best bet practices on herd health management including welfare.
- Gender-sensitive Herd Health Champions (HHCs) model to increase farmer-level capacities on best practices in herd health management.
- Capacity building of HHCs in herd health management and animal welfare.
- Capacity building of HHCs on BCC package using digital platforms to improve their knowledge on best practices on herd health management.
- Guidelines for rational use on pharmaceuticals including acaricides.
- Capacity building of value chain actors on rational use of veterinary products including vaccines.
- Improved business models for delivery of East Coast fever (ECF) and foot and mouth disease (FMD) vaccines.

IP2 draws on work from WPs 1, 3 and 4.

Box 4 IP3: Improved national digital system for animal and farm data capture and storage for enhanced dairy farming

Components of the package comprise:

- Setting up a national digital system for data capture and storage, provision of digital support for informed decision.
- Establishing sustainable breeding program that employs ICT and genomic technologies to select adaptable bulls, and bull dams, that could be used through artificial insemination.
- Certification of bulls and bull dams based on genomic breed composition and breeding values to support farmer’s breeding.
- Processing and delivery of semen from top ranked bulls selected using the genomic breeding values.
- Digital data capture and farmer education tools.
- Contextualized capacity building of farmers on the tools based on animal performance and husbandry practices.
- Enhance capacity of national partners on new tools and technologies to ensure sustainability.
- Develop different applications for on farm data collection and dairy profitability assessment.
- Capacity building of farmers on the dairy profitability app.
- Capacity building of national partners on genomic evaluation.
- SMS extension and feedback messaging to registered farmers.

IP1 draws on work from WPs 1 and 4.

Box 5 IP4: A dairy cooperative-centred agri-business model to enhance dairy farmer linkages to inputs and services and other business development services

Components of the package comprise:

- Capacity building of dairy cooperatives in governance.
- Linkage of dairy farmers to input and service providers and milk markets.
- Marketing - collection, quality control, chilling, and transportation of milk.
- Capacity development of farmer cooperative members in farm management practices through the digital platform in Innovation Package 1.

IP4 draws on WPs 1 and 4.
Next steps
ToCs are living documents that should be developed and updated in response to concrete programmatic needs. This theory of change will be reviewed in collaboration with stakeholders on an annual basis, with changes made as necessary. The reflection process, changes to the ToC and reasoning behind these changes will be documented as annexes to this report.
References

Annex 1: Elements included in the ToC

The ToC includes three standard elements: outputs (Innovation packages), outcomes and assumptions. CGIAR defines an outcome as ‘a change in knowledge, skills, attitudes and/or relationships, which manifests as a change in behaviour in particular actors, to which research outputs and related activities have contributed.’ In these ToCs, immediate outcomes (IOs) are initial changes in things like awareness and capacity that occur among next-users of the innovation packages. End-of Initiative outcomes (EOIs) are outcomes that occur further along the pathway and reflect changes in behaviour among target actors and, in some cases, the consequences of that behaviour such as increases in productivity or the value of investments. EOIs are the same across all ToCs while the immediate outcomes that lead to them are context specific. In order to see the whole VC ToC in a single diagram, multiple similar outcomes are grouped together in a single IO or EOIs. These could be unpacked in a series of nested ToCs if further detail on sub-pathways is needed.

Just as Innovation Packages combine innovations from different Work Packages, IOs and EOIs combine expected outcomes of different Work Packages that were specified in SAPLING’s results framework. As expected, the mapping of WP to ToC outcomes (IO and EOIs) is not one to one; for example use by value chain actors of a gender-aware business model can contribute to expected outcomes of Work Package 3 (strategies and approaches for enhancing gender equity and social inclusion) and Work Package 4 (evidence and approaches for strengthening competitive and inclusive livestock value chains). In Figure 2 each IO or EOI notes the WP outcome(s) to which it maps. Being explicit about how the different types of outcomes relate to each other is intended to facilitate use of the ToC for program-level monitoring and learning and avoid confusion and duplication.

Assumptions are ‘hypotheses about factors or risks which could affect the progress or success of a development intervention… It is useful to distinguish between: (i) theoretical assumptions, about how the intervention is expected to contribute to a process of change based on facts, and; (ii) contextual assumptions, about current conditions and the trajectory and risks that could affect the progress or success of a development intervention.’ While both types of assumptions are important, these ToCs focus on key theoretical assumptions since these are the ones that programs address as part of their research programs, investing resources to understand and test them.
Annex 2: Initiative and work package level of the SAPLING results framework

<table>
<thead>
<tr>
<th>Outcome code (EOI – end of initiative; WP = work package)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOI1</td>
<td>Co-created, demand-driven innovation packages of productivity- and resilience-enhancing, low emission technologies and the institutional arrangements (including markets) necessary for their adoption are being used by 800,000 people (male and female), including at least 100,000 people using SAPLING-promoted improved forage and food feed crops, in households keeping cattle, chickens, small ruminants, pigs and buffalo in Ethiopia, Kenya, Tanzania, Uganda, Mali, Nepal and Vietnam, resulting in a 30–50% increase in livestock productivity.</td>
</tr>
<tr>
<td>EOI2</td>
<td>Private and public sector partners invest at least USD 30 million in co-creation and delivery of novel, low-emission, demand-driven, gender and youth inclusive, and productivity enhancing technologies and practices for genetics, feed/forages and health.</td>
</tr>
<tr>
<td>EOI3</td>
<td>Six public and private sector organizations utilize initiative-developed social behaviour change communication strategies, tools or campaigns targeted at incorporating safe livestock-derived foods into diverse diets to inform nutrition education strategies and/or campaigns.</td>
</tr>
<tr>
<td>EOI4</td>
<td>Public and private decision makers utilize the initiative’s innovation packages to inform policies and investments in Ethiopia, Kenya, Tanzania, Uganda, Mali, Nepal and Vietnam towards an inclusive and sustainable livestock system, including progress towards equity and inclusion.</td>
</tr>
</tbody>
</table>

<p>| WP1–1 | Public and private sector value chain actors use promoted genetic improvement programs in smallholder systems, built on the needs and preferences of livestock keepers in seven countries, and incorporating information and communications technology as well as genomic and reproductive technologies as appropriate. |
| WP1–2 | Development partners as well as the public and private seed sector use, promote and commercialize improved forage and food-feed crops, and feed companies employ prioritization approaches to improve feed options and reduce livestock feeding gap. |
| WP1–3 | Animal health system actors in seven countries promote and use tools and technologies (herd health packages and disease control) to reduce disease burden. |
| WP2–1 | Government and development practitioners take up the decision support tools to diagnose and prioritize livestock-derived foods in food and nutrition interventions. |
| WP2–2 | Government and development practitioners support and promote social behaviour change communication and market-related innovations that enhance affordability and safety of livestock-derived foods. |
| WP3–1 | In four selected countries, policy, the private sector and the development community acknowledge gender- and youth-based discrimination in livestock value chains and co-develop strategies to close the gender and age gap. |
| WP3–2 | Community and household members in selected livestock value chains adopt gender-transformative approaches and show more gender-equitable behaviour to enable participation and benefitting from livestock assets and opportunities. |</p>
<table>
<thead>
<tr>
<th>Outcome code</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP3–3</td>
<td>Scientists, practitioners and extension agents in animal health, feeds and forages, genetics and environment collaborate with gender scientists to generate gender- and youth-responsive livestock innovation bundles.</td>
</tr>
<tr>
<td>WP4–1</td>
<td>Government and development practitioners support new business models and interventions that ensure improved competitiveness of the livestock value chains.</td>
</tr>
<tr>
<td>WP4–2</td>
<td>Government and development practitioners support and promote SAPLING innovation packages.</td>
</tr>
<tr>
<td>WP4–3</td>
<td>Market actors invest in profitable and inclusive business models promoted by SAPLING, which provide transparent and efficient markets.</td>
</tr>
<tr>
<td>WP5–1</td>
<td>Value chain actors are adjusting their investments and practices based on prioritization, trade-off and/or scaling readiness analysis.</td>
</tr>
<tr>
<td>WP5–2</td>
<td>Public and private decision makers utilize Initiative-developed tools and recommendations to inform policies and investments in the seven focus countries and beyond (scaling).</td>
</tr>
<tr>
<td>WP5–3</td>
<td>Researchers and decision makers have access to and use improved analytical tools (environmentally and gender-sensitive), evidence and processes to guide livestock master plans (LMP).</td>
</tr>
</tbody>
</table>
CGIAR’s Sustainable Animal Productivity for Livelihoods, Nutrition and Gender inclusion (SAPLING) is working in seven countries focusing on livestock value chains to package and scale out tried-and-tested, as well as new, innovations in livestock health, genetics, feed and market systems. SAPLING aims to demonstrate that improvements in livestock productivity can offer a triple win: generating improved livelihoods and nutritional outcomes; contributing to women’s empowerment; and, reducing impacts on climate and the environment. Its seven focus countries are Ethiopia, Kenya, Mali, Nepal, Tanzania, Uganda and Vietnam.