Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development

Loading...
Thumbnail Image

Date Issued

Date Online

2016-07-25

Language

en

Review Status

Peer Review

Access Rights

Open Access Open Access

Usage Rights

CC-BY-4.0

Share

Citation

Qian Zhao, Ye Kang, Hong-Yang Wang, Wei-Jun Guan, Xiang-Chen Li, Lin Jiang, Xiao-Hong He, Ya-Bin Pu, Jian-Lin Han, Yue-Hui Ma and Qian-Jun Zhao. 2016. Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development. Scientific Reports 6: 30281.

Permanent link to cite or share this item

External link to download this item

Abstract/Description

MicroRNAs (miRNAs) are evolutionarily conserved, small, non-coding RNAs that have emerged as key regulators of myogenesis. Here, we examined the miRNA expression profiles of developing sheep skeletal muscle using a deep sequencing approach. We detected 2,396 miRNAs in the sheep skeletal muscle tissues. Of these, miR-192 was found to be up-regulated in prenatal skeletal muscle, but was down-regulated postnatally. MiR-192 expression also decreased during the myogenic differentiation of sheep satellite cells (SCs). MiR-192 overexpression significantly attenuated SCs myogenic differentiation but promoted SCs proliferation, whereas miR-192 inhibition enhanced SCs differentiation but suppressed SCs proliferation. We found that miR-192 targeted retinoblastoma 1 (RB1), a known regulator of myogenesis. Furthermore, knockdown of RB1 in cultured cells significantly inhibited SCs myogenic differentiation but accelerated SCs proliferation, confirming the role of RB1 in myogenesis. Taken together, our findings enrich the ovine miRNA database, and outline the miRNA transcriptome of sheep during skeletal muscle development. Moreover, we show that miR-192 affects SCs proliferation and myogenic differentiation via down-regulation of RB1.